Peculiarities of macro- and cytometric assessment of morphological structures of the domestic pig heart

Keywords: Sus scrofa f. domestica; macroscopic structure; microscopic structure; myocardium; cardiomyocytes.

Abstract The cardiovascular system, which includes the heart, is one of the essential systems of the human and animal body. With its participation, the blood supply of the organs takes place; it promotes the outflow of lymph from the organs and its transport into the veins, and it helps to implement the functions of the organs of immune protection, endocrine, and nervous systems. The work aims to conduct a macro-, histo-, and cytomorphometric assessment of the morphological structures of the heart of the domestic pig using complex research methods (macroscopic, histological, morphometric). Functionally mature, clinically healthy animals (n = 7) of Sus scrofa f. domestica were used for the work. According to organometallic studies, the absolute weight of a pig's heart is 487.4 ± 8.12 g; the relative weight is 0.290 ± 0.004%, and the net weight of the heart is 461.4 ± 8.0 g. According to its linear dimensions, a domestic pig's heart is elongated-narrowed (conical) type, as evidenced by the heart development index of 155.1 ± 6.3%. According to the functional load of the muscle tissues of the myocardium of the heart and its separate morphological structures (ventricles and atria) when performing particular work during spontaneous rhythmic contractions, the absolute mass of the ventricles and atria is different. The enormous mass is characteristic of the left ventricle, then the right, and the smallest for the left and right atria. Therefore, the ventricles of the heart are more functionally developed, as evidenced by the ratio coefficient (1:0.79) of the mass of the ventricles to the net mass of the heart, respectively, the ratio coefficient (1:0.21) of the mass of the atria to the net mass of the heart and the ratio coefficient (1:0.27) atrial mass to ventricular mass. Cardiomyocytes of the left ventricle have the most significant volume, cardiomyocytes of the right ventricle have a smaller volume, and cardiomyocytes of the atria have the smallest volume. Their nuclear volumes have similar values, respectively, in the left ventricle – 77.16 ± 2.01 μm3, the right ventricle – 76.02 ± 2.43 μm3, and the atrium – 75.97 ± 3.24 μm3, and the nuclear-cytoplasmic ratio is different from them: the smallest nuclear-cytoplasmic ratio, respectively characteristic of cardiomyocytes of the left ventricle, significantly more for cardiomyocytes of the right ventricle and significantly the most for cardiomyocytes of the atria. The scientific results of morphoarchitectonics, organo-, histo-, and cytometry of the heart of the domestic pig presented in the publication supplement the information on the morphological structure of the heart of domestic animals in the relevant sections of histology, comparative anatomy and are a significant contribution to clinical cardiology.

References

Anderson, R. H., & Ho, S. Y. (2002). The morphology of the specialized atrioventricular junctional area: The evolution of understanding. Pacing and Clinical Electrophysiology, 25(6), 957–966.
Bashchenko, M. I., Boiko, О. V., Honchar, О. F., Gutyj, B. V., Lesyk, Y. V., Osta-pyuk, A. Y., Kovalchuk, І. І., & Leskiv, K. Y. (2020). The effect of milk thistle, metiphen, and silimevit on the protein-synthesizing function of the liver of laying hens in experimental chronic cadmium toxicosis. Ukrainian Journal of Ecology, 10(6), 164–168.
Bertho, E., & Gagnon, G. (1964). A comparative study in three dimension of the blood supply of the normal interventricular septum in human, canine, bovine, procine, ovine and equine heart. Diseases of the Chest, 46(3), 251–262.
Best, A., Egerbacher, M., Swaine, S., Pérez, W., Alibhai, A., Rutland, P., Kubale, V., El-Gendy, S. A. A., Alsafy, M. A. M., Baiker, K., Sturrock, C. J., & Rutland, C. S. (2022). Anatomy, histology, development and functions of Ossa cordis: A review. Anatomia, Histologia, Embryologia, 51(6), 683–695.
Bi, X. P., & Zhang, G. J. (2021). Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zoological Research, 42(2), 135–137.
Bilyk, O., Slyvka, N., Gutyj, B., Dronyk, H., & Sukhorska, O. (2017). Substantiation of the method of protein extraction from sheep and cow whey for producing the cheese “Urda”. Eastern-European Journal of Enterprise Technologies, 87, 18–22.
Borshch, O. O., Ruban, S. Y., Gutyj, B. V., Borshch, O. V., Sobolev, O. I., Kosior, L. T., Fedorchenko, M. M., Kirii, A. A., Pivtorak, Y. I., Salamakha, I. Y., Hor-diichuk, N. M., Hordiichuk, L. M., Kamratska, O. I., & Denkovich, B. S. (2020). Comfort and cow behavior during periods of intense precipitation. Ukrainian Journal of Ecology, 10(6), 98–102.
Cesarovic, N., Lipiski, M., Falk, V., & Emmert, M. Y. (2020). Animals in cardiovascular research: Clinical relevance and translational limitations of animal models in cardiovascular medicine. European Heart Journal, 41(2), 200–203.
Christoffels, V., & Jensen, B. (2020). Cardiac morphogenesis: Specification of the four-chambered heart. Cold Spring Harbor Perspectives in Biology, 12(10), a037143.
Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L., & Anderson, R. H. (1998). Anatomy of the pig heart: Comparisons with normal human cardiac structure. Journal of Anatomy, 193(1), 105–119.
Cupello, C., Hirasawa, T., Tatsumi, N., Yabumoto, Y., Gueriau, P., Isogai, S., Mat-sumoto, R., Saruwatari, T., King, A., Hoshino, M., Uesugi, K., Okabe, M., & Brito, P. M. (2022). Lung evolution in vertebrates and the water-to-land transi-tion. eLife, 11, e77156.
Demus, N. V. (2015). Orhanometrijia sertsia telychok zalezhno vid typu avtonomnoji rehuliatsiji sertsevoho rytmu [Organometry of the heart of heifers depending on autonomous regulation of the heart rate]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, 61, 24–29 (in Ukrainian).
Emam, M. A., & Abugherin, B. (2020). Histological study on the heart ventricle of Egyptian bovines (Bos aegyptiacus). Open Veterinary Journal, 9(4), 281–286.
Garg, S., Singh, P., Sharma, A., & Gupta, G. (2013). A gross comparative anatomi-cal study of hearts in human cadavers and pigs. International Journal of Medical and Dental Sciences, 2(2), 170–176.
Gómez-Torres, F. A., Estupiñán, H. Y., & Ruíz-Saurí, A. (2021). Morphometric analysis of cardiac conduction fibers in horses and dogs, a comparative histological and immunohistochemical study with findings in human hearts. Research in Veterinary Science, 135, 200–216.
Hnatyuk, M. S., Slabiy, O. B., & Tatarchuk, L. V. (2016). Yaderno-tsytoplazmatychni vidnoshennia u kardiomiotsytakh ta endoteliotsytakh shlunochkiv leheneveho sertsia [Nuclear-cytoplasmatic relations in the cardiomyocytes and endotheliocytes of the pulmonary heart ventricles]. Klinichna Anatomiia ta Operatyvna Khirurhiia, 55, 67–70 (in Ukrainian).
Horalskyi, L. P., Khomych, V. T., & Kononskyi, O. I. (2019). Osnovy histolohich-noyi tekhniky ta morfofunktsionalnykh metodiv doslidzhennia v normi ta patolohiyi [Fundamentals of histological technique and morphofunctional research methods in normal and pathology]. Polissia, Zhytomyr (in Ukrainian).
Horalskyi, L. P., Sokulskyi, I. M., Kolesnik, N. L., Radzіkhovsky, N. L., Dunaievska, О. F., Gutyj, B. V., Pavliuchenko, O. V., & Horalska, I. Y. (2023). Specific features of the morphology of the spinal nodes of homeothermal vertebrate animals in the comparative and anatomical series. Ukrainian Journal of Veterinary and Agricultural Sciences, 6(1), 24–33.
Hushchyn, Y. A. (2021). Sravnitel’naja anatomija serdca cheloveka i eksperimen-tal’nykh zhivotnykh [Comparative anatomy of human hearts and experimen-tal animals]. Laboratornye Zhivotnye dlia Nauchnykh Issledovanij, 1, 56–67 (in Russian).
Khalak, V., Gutyj, B., Stadnytska, O., Shuvar, I., Balkovskyi, V., Korpita, H., Shuvar, A., & Bordun, О. (2021). Breeding value and productivity of sows of the Large White breed. Ukrainian Journal of Ecology, 11(1), 319–324.
Kots, S. N., Kots, V. P., & Kovalenko, P. G. (2021). Dynamika pokaznykiv funktsional’nho stanu sertsevo-sudynnoji systemy ditej shkil’noho viku pid vplyvom korektsijnoho kompleksu [Dynamics of the functional state of the cardiovascular system of school-age children under the influence of a corrective complex]. Pryrodnychyj Almanakh, 31, 35–44.
Kukhar, O. (2013). Suchasni tendentsiji rozvytku tvarynnytstva v Ukrajini [Current trends the development of animal husbandry in Ukraine]. Efektyvna Ekonomika, 8, 1–6 (in Ukrainian).
Linask, K. K. (2003). Regulation of heart morphology: Current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Research. Part C. Embryo Today: Reviews, 69(1), 14–24.
Mishalov, V. D., Chaikovskyi, Y. B., & Tverdokhlib, I. V. (2007). Pro pravovi, zakonodavchi ta etychni normy i vymohy pry vykonanni naukovykh morfolohichnykh doslidzhen’ [About legal, legislative and ethical norms and requirements in the performance of scientific morphological research]. Morfolohiia, 1(2), 108–115 (in Ukrainian).
Mits, I. R., Denefil, O. V., & Andriishyn, O. P. (2016). Morfolohichni zminy vnu-trishnikh orhaniv u tvaryn riznoji stati, yaki zaznaly khronichnoho stresu [Morphological changes of internal organs in animals of different sexes with chronic stress]. Bulletin of Scientific Research, 3, 107–110 (in Ukrainian).
Pepko, V., Orobchenko, O., Sachuk, R., Gutyj, B., Stravskyy, Y., Velesyk, T., & Katsaraba, O. (2022). The influence of veterinary and zootechnical measures on the content of essential microelements and the quality of meat of wild deer-like in the western region of Ukraine. Journal of Microbiology, Biotechnology and Food Sciences, 12(4), e9344.
Pilz, P. M., Ward, J. E., Chang, W. T., Kiss, A., Bateh, E., Jha, A., Fisch, S., Podesser, B. K., & Liao, R. (2022). Large and small animal models of heart failure with reduced ejection fraction. Circulation Research, 130(12), 1888–1905.
Poelmann, R. E., & Gittenberger-de Groot, A. C. (2019). Development and evolu-tion of the metazoan heart. Developmental Dynamics, 248(8), 634–656.
Popovych, T., & Golinka, S. (2021). Derzhavna polityka u sferi bezpechnosti kharchovykh produktiv ta veterynarnoji medytsyny [Public policy in the field of food safety and veterinary medicine]. Naukovyj Visnyk Uzhhorodskoho Natsionalnoho Universytetu, Seriia: Pravo, 67, 158–162.
Radzykhovskyi, M., Sokulskiy, I., Dyshkant, O., Antoniuk, A., Gutyj, B., & Sachuk, R. (2022). Experimental study of tropism of cultivated canine parvovirus in the immunogenesis organs of puppies. Regulatory Mechanisms in Biosystems, 13(3), 241–246.
Raiola, M., Sendra, M., & Torres, M. (2023). Imaging approaches and the quantita-tive analysis of heart development. Journal of Cardiovascular Development and Disease, 10(4), 145.
Razanova, O., Yaremchuk, O., Gutyj, B., Farionik, T., & Novgorodska, N. (2022). Dynamics of some mineral elements content in the muscle, bone and liver of quails under the apimin influence. Scientific Horizons, 25(5), 22–29.
Rudyk, S. K. (2004). Kurs lektsij z porivnialnoji anatomiji [Course of lectures on comparative anatomy]. Academy of Sciences of the Higher School of Ukraine, Kyiv (in Ukrainian).
Rykiel, G., López, C. S., Riesterer, J. L., Fries, I., Deosthali, S., Courchaine, K., Maloyan, A., Thornburg, K., & Rugonyi, S. (2020). Multiscale cardiac imaging spanning the whole heart and its internal cellular architecture in a small animal model. eLife, 9, e58138.
Sarah, K. B., Adam, M. S., & Tomasz, J. G. (2020). Cardiovascular research at the frontier of biomedical science. Cardiovascular Research, 116, 83–86.
Shah, A., Goerlich, C. E., Pasrija, C., Hirsch, J., Fisher, S., Odonkor, P., Strauss, E., Ayares, D., Mohiuddin, M. M., & Griffith, B. P. (2022). Anatomical differences between human and pig hearts and their relevance for cardiac xenotransplantation surgical technique. Journal of the American College of Cardiology: Case Reports, 4(16), 1049–1052.
Shemla, O., Tsutsui, K., Behar, J. A., & Yaniv, Y. (2021). Beating rate variability of isolated mammal sinoatrial node tissue: Insight into its contribution to heart rate variability. Frontiers in Neuroscience, 14, 614141.
Shevchenko, I. V. (2018). Morfolohichni osnovy morfohenezu sertsia u ranniomu postnatalnomu rozvytku v normi [Morphological bases of heart morphogenesis in normal early postnatal development]. Visnyk Problem Biolohiji i Medytsyny, 145, 45–55 (in Ukrainian).
Stadnytska, O., Gutyj, B., Khalak, V., Fedak, V., Dudchak, I., Zmiia, M., Shuvar, I., Balkovskyi, V., Shuvar, A., Korpita, H., Chyzhanska, N., Kuzmenko, L., & Vakulik, V. (2022). Biological assessment of the constitution of the Polissian beef cattle in the conditions of the Precarpathian region. Scientific Papers. Series D: Animal Science, 65(2), 46–52.
Stravsky, Y. S., Boltyk, N. P., Sachuk, R. M., Serheyev, V. I., & Rushchynska, T. M. (2020). The content of total protein and protein fractions in cows during pregnancy and their diagnostic value. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 99, 198–202.
Weiser-Bitoun, I., Davoodi, M., Rosenberg, A. A., Alexandrovich, A., & Yaniv, Y. (2021). Opening the schrödinger box: Short- and long-range mammalian heart rate variability. Frontiers in Physiology, 12, 665709.
Zhang, L., Allen, J., Hu, L., Caruthers, S. D., Wickline, S. A., & Chen, J. (2013). Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts de-lineated with diffusion tensor MRI. American Journal of Physiology. Heart and Circulatory Physiology, 304(2), H246–H252.
Zurbrigg, K., van Dreumel, T., Rothschild, M. F., Alves, D., Friendship, R. M., & O'Sullivan, T. L. (2018). A comparison of cardiac lesions and heart weights from market pigs that did and did not die during transport to one Ontario abat-toir. Translational Animal Science, 3(1), 149–154.

Comments (0)

No login
gif