Keywords: climate change; global warming; spatial ecology; geomorphological factors; hemeroby; plant community
Abstract Soil organic carbon comprises the majority of the terrestrial soil carbon pool and plays an important role in the global carbon cycle and balance. Even minor changes in soil organic carbon (SOC) can have a significant impact, not only on climate but also on ecosystem stability, due to its key role in soil-atmosphere carbon exchange, plant growth, and food production. In order to assess the feedbacks between the terrestrial carbon cycle and climate change, and to maintain ecosystem functions, it is crucial to understand the spatial and temporal changes in SOC and the drivers of these changes. The role of soil as a source or sink of atmospheric CO2 is primarily influenced by changes in climate and soil water content. Climate change, particularly global warming, can have a direct or indirect impact on the decomposition of organic matter by regulating soil microbes and fauna, enzyme activity, and soil respiration. A warming climate may increase the loss of soil carbon to the atmosphere because warming has a stronger effect on respiration than on photosynthesis, resulting in a positive soil carbon-climate feedback. Climate warming can significantly affect soil organic matter stocks, with the magnitude of the effect largely dependent on the initial organic matter stock size. Soil carbon content is a crucial aspect of terrestrial ecosystems that affects their functional properties and the climate. Conversely, climate also has an impact on soil organic carbon content. The spatial variability of soil organic carbon content and the predictions made for the west-central European region are also important considerations. The study identified the spatial variation of soil organic carbon throughout Europe and forecast its dynamics in the next 50–70 years, considering global climate change. Digital soil mapping enables a more precise representation of soil properties in space, including the spatial quantification of prediction errors. The accuracy of these predictions increases as more local observations, such as soil profiles, are available to construct the prediction model. Digital soil mapping allows flexible spatial development of soil property maps. Soil properties, such as nutrient concentration and stocks, carbon, heavy metals, pH, cation exchange capacity, and physical properties like particle size and bulk density, can be modelled at different depths and spatial resolutions depending on the project's objectives and available input data. The r GSOCmap project used a 1 km grid to model soil organic matter content. In Europe, the range of soil organic carbon content is from 0 to 750 t/ha, with a mean of 78.1 t/ha and a standard deviation of 50.1 t/ha. Climatic factors were found to account for 29% of the variation in soil organic carbon based on regression analysis. The study revealed that an increase in air temperature leads to a decrease in soil organic carbon content, while an increase in precipitation results in an increase in this indicator. Additionally, the content of soil organic matter is negatively impacted by an increase in the seasonality of precipitation. According to the forecast, global climate change will cause an increase of 1.0–1.1 t/ha in the organic carbon content of 3.6% of the continent's area over the next 70 years. On 7.6% of the area, the changes will be insignificant. The soil organic carbon content is expected to decrease on 88.9% of the area. Of this, 35.1% will experience a slight decrease in carbon content by 0–1 t/ha, 28.4% will experience a moderate decrease in soil organic carbon content by 1.0–1.1 t/ha, and 25.3% will experience a significant decrease by 1.1–1.3 t/ha. The Baltic countries, Belarus, and the Black Earth zone of Russia are at the highest risk. The risk of Russia becoming highly dependent on food imports is increased by this fact. The prospects for Ukraine are quite optimistic. Even in the northern Azov region, we can expect an intensification of humus accumulation processes in the near future, mainly due to increased precipitation. Precipitation in southern Ukraine is a limiting factor that significantly affects agricultural productivity. Increased precipitation and organic matter growth in the soil present positive prospects for agriculture in southern Ukraine, including the northern Azov, Black Sea, and Crimea. It is possible that the occupation of these territories, which are promising for agricultural production, is one of the goals of Russian armed aggression against Ukraine.
References
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., & Wu, T. (2013). Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. Journal of Climate, 26(15), 5289–5314.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., & Hatté, C. (2018). Atmosphere-soil carbon transfer as a function of soil depth. Nature, 559(7715), 599–602.
Brus, D., Hengl, T., Heuvelink, G., Kempen, B., Mulder, T. V. L., Olmedo, G. F., Poggio, L., Ribeiro, E., & Omuto, C. T. (2017). Soil organic carbon mapping – GSOC map cookbook manual. Global Soil Partnership, Food and Agriculture Organization of the United Nations.
Calvo de Anta, R., Luís, E., Febrero-Bande, M., Galiñanes, J., Macías, F., Ortíz, R., & Casás, F. (2020). Soil organic carbon in peninsular Spain: Influence of envi-ronmental factors and spatial distribution. Geoderma, 370, 114365.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Megan Stein-weg, J., Wallenstein, M. D., Martin Wetterstedt, J. Å., & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404.
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108.
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173.
Diffenbaugh, N. S., Davenport, F. V., & Burke, M. (2021). Historical warming has increased U.S. crop insurance losses. Environmental Research Letters, 16(8), 084025.
Dlamini, P., Chivenge, P., & Chaplot, V. (2016). Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agriculture, Ecosystems and Environment, 221, 258–269.
Ebrahimi, A., & Or, D. (2016). Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles – upscaling an aggregate bi-ophysical model. Global Change Biology, 22(9), 3141–3156.
Fedonenko, E. V., Kunakh, O. M., Chubchenko, Y. A., & Zhukov, O. V. (2022). Application of remote sensing data for monitoring eutrophication of floodplain water bodies. Biosystems Diversity, 30(2), 179–190.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
Fitzgibbon, A., Pisut, D., & Fleisher, D. (2022). Evaluation of maximum entropy (MaxEnt) machine learning model to assess relationships between climate and corn suitability. Land, 11(9), 1382.
Gavrilescu, M. (2021). Water, soil, and plants interactions in a threatened environ-ment. Water, 13(19), 2746.
Gelybó, G., Tóth, E., Farkas, C., Horel, Á., Kása, I., & Bakacsi, Z. (2018). Potential impacts of climate change on soil properties. Agrokémia és Talajtan, 67(1), 121–141.
Guggenberger, G. (2005). Humification and mineralization in soils. In: Varma, A., & Buscot, F. (Eds.). Microorganisms in soils: Roles in genesis and functions. Springer-Verlag. Pp. 85–106.
Hossain, M. B., Rahman, M. M., Biswas, J. C., Miah, M. M. U., Akhter, S., Mani-ruzzaman, M., Choudhury, A. K., Ahmed, F., Shiragi, M. H. K., & Kalra, N. (2017). Carbon mineralization and carbon dioxide emission from organic mat-ter added soil under different temperature regimes. International Journal of Re-cycling of Organic Waste in Agriculture, 6(4), 311–319.
Jia, B., Zhou, G., & Yuan, W. (2007). Modeling and coupling of soil respiration and soil water content in fenced Leymus chinensis steppe, Inner Mongolia. Ecologi-cal Modelling, 201(2), 157–162.
Koshelev, A. I., Pakhomov, O. Y., Kunakh, O. M., Koshelev, V. A., & Fedushko, M. P. (2020). Temporal dynamic of the phylogenetic diversity of the bird community of agricultural lands in Ukrainian steppe drylands. Biosystems Diversity, 28(1), 34–40.
Kunakh, O. M., & Fedyay, I. O. (2020). Are Heteroptera communities able to be bioindicators of urban environments? Biosystems Diversity, 28(2), 195–202.
Kunakh, O. M., Ivanko, I. A., Holoborodko, K. K., Lisovets, O. I., Volkova, A. M., Nikolaieva, V. V., & Zhukov, O. V. (2022). Modeling the spatial variation of urban park ecological properties using remote sensing data. Biosystems Diversity, 30(3), 213–225.
Kunakh, O. M., Ivanko, I. A., Holoborodko, K. K., Volkova, A. M., & Zhukov, O. V. (2023). Age estimation of black locust (Robinia pseudoacacia) based on morphometric traits. Biosystems Diversity, 31(2), 222–228.
Kunakh, O. M., Volkova, A. M., Tutova, G. F., & Zhukov, O. V. (2023). Diversity of diversity indices: Which diversity measure is better? Biosystems Diversity, 31(2), 131–146.
Kunakh, O. M., Yorkina, N. V., Turovtseva, N. M., Bredikhina, J. L., Balyuk, J. O., & Golovnya, A. V. (2021). Effect of urban park reconstruction on physical soil properties. Ecologia Balkanica, 13(2), 57–73.
Kunakh, O., & Kovalenko, D. (2019). Fitting competing models of the population abundance distribution: Land snails from Nikopol Manganese Ore Basin Technosols. Ekologia (Bratislava), 38(4), 367–381.
Kunakh, O., Umerova, A., & Degtyarenko, E. (2022). Spatial distribution of micro-mollusks under the impact of recreation. IOP Conference Series: Earth and En-vironmental Science, 1049(1), 012063.
Kunakh, O., Zhukova, Y., Yakovenko, V., & Daniuk, O. (2022). Influence of plants on the spatial variability of soil penetration resistance. Ekológia (Bratislava), 41(2), 113–125.
Liu, J., Liang, J., Bravo, A. G., Wei, S., Yang, C., Wang, D., & Jiang, T. (2021). Anaerobic and aerobic biodegradation of soil-extracted dissolved organic matter from the water-level-fluctuation zone of the Three Gorges Reservoir region, China. Science of the Total Environment, 764, 142857.
Lovynska, V., Holoborodko, K., Ivanko, I., Sytnyk, S., Zhukov, O., Loza, I., Wiche, O., & Heilmeier, H. (2023). Heavy metal accumulation by Acer platanoides and Robinia pseudoacacia in an industrial city (Northern Steppe of Ukraine). Biosystems Diversity, 31(2), 246–253.
Lynch, J., Cain, M., Frame, D., & Pierrehumbert, R. (2021). Agriculture’s contribu-tion to climate change and role in mitigation is distinct from predominantly fos-sil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4, 518039.
Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: A global perspective – a review article. Agriculture and Food Security, 10(1), 36.
Neira, J., Ortiz, M., Morales, L., & Acevedo, E. (2015). Oxygen diffusion in soils: Understanding the factors and processes needed for modeling. Chilean Journal of Agricultural Research, 75, 35–44.
Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes. In: Long-more, R. (Ed.). Atlas of elapid snakes of Australia. Australian Flora and Fauna Series. Australian Government Publishing Service. Vol. 7. Pp. 4–15.
Pakhomov, O. Y., Kunakh, O. M., Babchenko, A. V., Fedushko, M. P., Demchuk, N. I., Bezuhla, L. S., & Tkachenko, O. S. (2019). Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Biosystems Diversity, 27(4), 322–328.
Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P., Fried-lingstein, P., & Sitch, S. (2020). Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 26(1), 300–318.
Potapenko, O., Kunah, O. M., & Fedushko, M. P. (2019). The effect of technological oil spill in soil within electrical generation substations, analysed by ecological regime in the context of relief properties. Biosystems Diversity, 27(1), 43–50.
Quan, Q., Tian, D., Luo, Y., Zhang, F., Crowther, T. W., Zhu, K., Chen, H. Y. H., Zhou, Q., & Niu, S. (2019). Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 5(8), eaav1131.
Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., & Montgom-ery, R. A. (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562(7726), 263–267.
Reyna-Bowen, L., Fernandez-Rebollo, P., Fernández-Habas, J., & Gómez, J. A. (2020). The influence of tree and soil management on soil organic carbon stock and pools in dehesa systems. Catena, 190, 104511.
Saranenko, I. (2011). Application experience of agricultural lands productivity improvement methods. Polish Journal of Natural Sciencesthis, 26(4), 285–292.
Schindlbacher, A., Wunderlich, S., Borken, W., Kitzler, B., Zechmeister-Boltenstern, S., & Jandl, R. (2012). Soil respiration under climate change: Prolonged summer drought offsets soil warming effects. Global Change Biology, 18(7), 2270–2279.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Or-lowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interac-tions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125–161.
Shupranova, L., Holoborodko, K., Loza, I., Zhukov, O., & Pakhomov, O. (2022). Assessment of Parectopa robiniella Clemens (Lepidoptera: Gracillariidae) ef-fect on biochemical parameters of Robinia pseudoacacia under conditions of an industrial city in Steppe Ukraine. Ekológia (Bratislava), 41(4), 340–350.
Solonenko, A. M., Arabadzhy-Tipenko, L. I., Kunakh, O. M., & Kovalenko, D. V. (2020). The role of ecological groups in the formation of cyanobacterial com-munities in the ecosystems of the North Azov Region (Ukraine). Biosystems Diversity, 28(3), 216–223.
Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, C. E., Dobrowski, S. Z., & Townsend, A. R. (2017). Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 20(6), 779–788.
Tsvetkova, N. M., & Saranenko, I. I. (2007). Physicochemical and morphological soils’ properties of the technozone of Kremenchuk Town. Visnyk of Dnipropetrovsk University, Biology, Ecology, 15(1), 145–149.
Tsvetkova, N. M., & Saranenko, I. I. (2010). Influence of the fertilizers use on indices of chernozem’s quality. Visnyk of Dnipropetrovsk University, Biology, Ecology, 18(1), 117–122.
Tsvetkova, N. M., Saranenko, I. I., & Dubina, A. O. (2015). Application of geo-graphic information systems in evaluating the development of gully erosion in the steppe zone of Ukraine. Visnyk of Dnipropetrovsk University, Biology, Ecology, 23(2), 197–202.
Tutova, G. F., Kunakh, O. M., Yakovenko, V. M., & Zhukov, O. V. (2023). The importance of relief for explaining the diversity of the floodplain and terrace soil cover in the Dnipro River valley: The case of the protected area within the Dnipro-Orylskiy Nature Reserve. Biosystems Diversity, 31(2), 177–190.
Tutova, G. F., Zhukov, O. V, Kunakh, O. M., & Zhukova, Y. O. (2022). Response of earthworms to changes in the aggregate structure of floodplain soils. IOP Conference Series: Earth and Environmental Science, 1049(1), 012062.
Wadoux, A. M. J.-C., Minasny, B., & McBratney, A. B. (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210, 103359.
Wan, S., Norby, R. J., Ledford, J., & Weltzin, J. F. (2007). Responses of soil respira-tion to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13(11), 2411–2424.
Yakovenko, V., Kunakh, O., Tutova, H., & Zhukov, O. (2023). Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve). Folia Oecologica, 50(2), 119–133.
Yigini, Y., & Panagos, P. (2016). Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Science of the Total Environ-ment, 557–558, 838–850.
Zhao, F., Wu, Y., Hui, J., Sivakumar, B., Meng, X., & Liu, S. (2021). Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance and Management, 16(1), 24.
Zhao, F., Wu, Y., Yao, Y., Sun, K., Zhang, X., Winowiecki, L., Vågen, T.-G., Xu, J., Qiu, L., Sun, P., & Sun, Y. (2020). Predicting the climate change impacts on water-carbon coupling cycles for a loess hilly-gully watershed. Journal of Hy-drology, 581, 124388.
Zhukov, O., Kunakh, O., Bondarev, D., & Chubchenko, Y. (2022). Extraction of macrophyte community spatial variation allows to adapt the Macrophyte Bio-logical Index for Rivers to the conditions of the middle Dnipro River. Limnolo-gica, 126036.
Zhukova, Y. O., Yorkina, N. V., Budakova, V. S., & Kunakh, O. M. (2020). The small-scale variation of herb-layer community structure in a riparian mixed forest. Biosystems Diversity, 28(4), 390–398.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M., Zhu, X., & Laganière, J. (2017). Climate warming can accelerate carbon fluxes without changing soil carbon stocks. Frontiers in Earth Science, 5, 2.
Comments (0)