Biological activity of soils in Ukraine depending on tillage options: A meta-analysis

Keywords: carbon dioxide; cellulose decomposition; conventional tillage; emission; flat cutter tillage; no-till; tillage depth; subsoil tillage

Abstract Tillage is one of the major factors affecting soil biological activity, resulting in changes in soil organic carbon (SOC) content, providing for carbon sequestration and shifts in carbon dioxide emission from soils. Current climate change and aggravation of global warming through the increased emission of carbon dioxide are main driving forces for global transformation of agricultural practices in the direction of climate-smart agriculture (CSA), which requires the implementation of such crop cultivation practices that result in the minimization of SOC losses and carbon dioxide emissions. The magnitude and direction of different tillage practices affecting soil biological activity are different, therefore, the best tillage options should be chosen for implementation in national CSA systems to ensure achieving the global sustainability goals. This nationwide meta-analysis, conducted for tillage practices utilized in Ukrainian agriculture examines scientifically recorded effects of moldboard tillage depth, flat cutter and no-till options on soil respiration rates and cellulose decomposition intensity in dark-chestnut and chernozem soils of Ukraine. This meta-analysis enrolled 45 studies, which met the stipulated scientific quality criteria. Statistical processing was conducted through the standardized mean difference (SMD) model without subgroups at 95% confidence interval (CI). As a result, it was determined that there is subtle impact of moldboard tillage depth on soil biological activity, which is inconclusive and unclear. The similar results were obtained for the comparison between the tillage and no-till groups, where high heterogeneity of the dataset (I2 = 82.8%) resulted in low quality of evidence for the benefits of no-till in SOC sequestration. Besides, zero fail-safe numbers support the suggestion of low-quality evidence in favor of shallow plowing advantage over deep plowing, as well as no-till against tillage. As for the difference between the groups of moldboard and flat cutter tillage, it was established that there is strong enough evidence for the advantage of flat cutter tillage in terms of soil respiration rates and cellulose decomposition intensity reduction. Further studies in this direction are required to fill the gaps in current meta-analysis, especially in terms of no-till options and their effect on biological activity of Ukrainian soils in different cropping systems.

References

Abdalla, K., Chivenge, P., Ciais, P., & Chaplot, V. (2016). No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences, 13(12), 3619–3633.
Aich, A., Dey, D., & Roy, A. (2022). Climate change resilient agricultural practices: A learning experience from indigenous communities over India. PLoS Sustai-nability and Transformation, 1(7), e0000022.
Bao, Y., Dolfing, J., Guo, Z., Chen, R., Wu, M., Li, Z., Lin, X., & Feng, Y. (2021). Important ecophysiological roles of non-dominant Actinobacteria in plant resi-due decomposition, especially in less fertile soils. Microbiome, 9, 84.
Beheshti, A., Chavanon, M. L., & Christiansen, H. (2020). Emotion dysregulation in adults with attention deficit hyperactivity disorder: A meta-analysis. BMC Psychiatry, 20(1), 120.
Bogatyr, L. V. (2015). Vplyv osnovnoho obrobitku gruntu ta udobrennia na biolo-hichnu aktyvnist’ osushuvanykh orhanohennykh gruntiv pid posivamy kukurudzy [The influence of the main cultivation and fertilization on the biological activity of peat soils corn cultivation]. Collection of Scientific Works of the Uman National University of Horticulture, 87, 111–118 (in Ukrainian).
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta-analysis. John Wiley & Sons, New York.
Bregaglio, S., Mongiano, G., Ferrara, R. M., Ginaldi, F., Lagomarsino, A., & Rana, G. (2022). Which are the most favourable conditions for reducing soil CO2 emissions with no-tillage? Results from a meta-analysis. International Soil and Water Conservation Research, 10(3), 497–506.
Chatskikh, D., Olesen, J. E., Hansen, E. M., Elsgaard, L., & Petersen, B. M. (2008). Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. Agriculture, Ecosystems and Environment, 128, 117–126.
Chornyy, S. G., & Vydynivska, O. V. (2012). Biolohichna aktyvnist’ ta azotnyi rezhym chornozemu pivdennoho pry zaprovadzhenni tekhnolohii no-till [Biological activity and nitrogen regime of southern chornozem by implementation no-till farming]. Bulletin of Odesa National University, Geographical and Geological Sciences, 17(2), 97–103 (in Ukrainian).
Datsko, O. M., & Zakharchenko, E. A. (2023). Aktyvnyst tselulozoruinivnykh bakterij za riznykh obrobitkiv gruntu ta peredposivmnoji inokuliatsiji kukurudzy [Activity of cellulose-decomposing bacteria under different soil tillage and pre-sowing inoculation of corn]. Bulletin of Sumy National Agrarian University, Agronomy and Biology, 51, 28–36 (in Ukrainian).
Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press, Cambridge.
Emmerling, C. (2007). Reduced and conservation tillage effects on soil ecological properties in an organic farming system. Biological Agriculture and Horticul-ture, 24(4), 363–377.
Feng, J., Li, F., Zhou, X., Xu, C., Ji, L., Chen, Z., & Fang, F. (2018). Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis. PLoS One, 13(5), e0196703.
Gelybó, G., Barcza, Z., Dencső, M., Potyó, I., Kása, I., Horel, Á., Pokovai, K., Birkas, M., Kern, A., Hollos, R., & Tóth, E. (2022). Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate. Soil and Tillage Research, 216, 105239.
Hanhur, V. V., & Sakhatska, V. M. (2019). Mikrobiolohichna aktyvnist’ gruntu za rizhykh sposobiv obrobitku [Soil microbiological activity under different tillage methods]. Bulletin of Poltava State Agrarian Academy, 4, 13–19.
Hellin, J., Fisher, E., Taylor, M., Bhasme, S., & Loboguerrero, A. M. (2023). Trans-formative adaptation: From climate-smart to climate-resilient agriculture. CABI Agriculture and Bioscience, 4(1), 30.
Huang, Y., Ren, W., Wang, L., Hui, D., Grove, J. H., Yang, X., Tao, B., & Goff, B. (2018). Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agriculture, Ecosystems and Environment, 268, 144–153.
Ishchenko, V. A., & Kozelets, H. M. (2021). Formation of spring barley productivity depending on seed inoculation with a biopreparation and foliar fertilization in the Steppe of Ukraine. Agrology, 4(4), 180–186.
Jiao, F., Hong, S., Cui, J., Zhang, Q., Li, M., Shi, R., Han, H., & Li, Q. (2022). Sub-soiling combined with irrigation improves carbon emission and crop water productivity of winter wheat in North China Plain. Agricultural Water Man-agement, 269, 107685.
Kladivko, E. J. (2001). Tillage systems and soil ecology. Soil and Tillage Research, 61(1–2), 61–76.
Kryhanivskyi, V. H., & Kostohryz, P. V. (2010). Biolohichna aktyvnist’ chornozemu opidzolenoho v lantsi piatypil’noji sivozminy zalezhno vid zakhodiv osnovnoho obrobitku gruntu [Biological activity of black podzolized soil at the end of five-course rotation in its dependence on the measures of basic soil cultivation]. Collection of Scientific Works of Bilotserkivsky SAU, 69, 16–18 (in Ukrainian).
Lal, R. (2017). Encyclopedia of soil science. Taylor and Francis, CRC Press, New York.
Lamptey, S., Li, L., Xie, J., Zhang, R., Luo, Z., Cai, L., & Lui, J. (2017). Soil respira-tion and net ecosystem production under different tillage practices in semi-arid Northwest China. Plant Soil Environment, 63(1), 14–21.
Langraf, V., Petrovičová, K., Schlarmannová, J., David, S., Avtaeva, T. A., & Bry-gadyrenko, V. V. (2021). Assessment of soil quality in agroecosystems based on soil fauna. Biosystems Diversity, 29(4), 319–325.
Lavrenko, N. M. (2015). Urozhainist ta yakist zerna nutu zalezhno vid tekhnolohichnykh pryiomiv vyroshchuvannia za riznykh umov zvolozhennia [Yield and quality of chickpea depending on cultivation technology under different humidification conditions]. KSAU, Kherson (in Ukrainian).
Li, Z., Zhang, Q., Li, Z., Qiao, Y., Du, K., Yue, Z., Tian, C., Leng, P., Cheng, H., Chen, G., & Li, F. (2023). Responses of soil greenhouse gas emissions to no-tillage: A global meta-analysis. Sustainable Production and Consumption, 36, 479–492.
Lykhovyd, P. V., & Lavrenko, S. O. (2017). Vplyv obrobitku gruntu ta mineralnykh dobryv na biolohichnu aktyvnist’ gruntu pid posivamy kukurudzy tsukrovoji [Influence of tillage and mineral fertilizers on soil biological activity under sweet corn crops]. Ukrainian Journal of Ecology, 7(4), 18–24 (in Ukrainian).
Maksymov, M. V. (2016). Udoskonalennia tekhnolohiji vyroshchuvannia sochevytsi za riznykh umov zvolozhennia [Improving lentils cultivation technology at different humidification conditions]. KSAU, Kherson (in Ukrainian).
Manushkina, T., Drobitko, A., Kachanova, T., & Heraschenko, O. (2020). Ekolo-hichni osoblyvosti tekhnolohiji no-till v umovakh Pivdennoho Stepu Ukrainy [Ecological features of no-till technology in the conditions of the Southern Steppe of Ukraine]. Agrarian Bulletin of the Black Sea Littoria, 4, 47–53 (in Ukrainian).
Mathes, T., & Kuss, O. (2018). A comparison of methods for meta‐analysis of a small number of studies with binary outcomes. Research Synthesis Methods, 9(3), 366–381.
Medvedev, E. B. (2018). Vplyv sposobiv obrobitku i dobryv na rodiuchist’ gruntu ta urozhainist’ sils’kohospodarkykh kul’tur v umovakh pivnichnoji chastyny Donetskoho Kriazhu [The impact of soil cultivation methods and fertilizers on the soil fertility performance and crop yields under the conditions of the northern part of the Donetsk Highland]. Grain Crops, 2(2), 314–323 (in Ukrainian).
Miao, Y., Niu, Y., Luo, R., Li, Y., Zheng, H., Kuzyakov, Y., Chen, Z., Liu, D., & Ding, W. (2021). Lower microbial carbon use efficiency reduces cellulose-derived carbon retention in soils amended with compost versus mineral fertilizers. Soil Biology and Biochemistry, 156, 108227.
Miroshnichenko, M. M., Syabryk, O. P., Shumel, V. V., & Shevchenko, M. V. (2012). Vplyv osnovnoho obrobitku na intensyvnist’ dykhannia chornozemu typovoho vprodovzh vehetatsijnoho periodu [Influence of the basic cultivation of typical chernozem on its respiration during the vegetation period]. Bulletin of KhNAU, 3, 123–127 (in Ukrainian).
Moraru, P. I., & Rusu, T. (2013). No-tillage and minimum tillage systems with reduced energy consumption and soil conservation in the hilly areas of Roma-nia. Journal of Food, Agriculture and Environment, 11(2), 1227–1231.
Nikitenko, M. P., & Averchev, O. V. (2021). Climate-smart agriculture in Ukraine. In: Proceedings of the IV Ukrainian scientific and practical conference of young scientists devoted to the Day of agricultural worker “Modern Science: State and Prospects of Development” (November 17, 2021). Kherson. Pp. 87–91.
Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B., & Cambardella, C. A. (2020). Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma, 369, 114335.
Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K., & Vazquez-Amabile, G. G. (2019). Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Scientific Reports, 9(1), 11665.
Pavlichenko, A. A., Bondarenko, O. M., & Vakhnii, S. P. (2014). Vplyv system obrobitku gruntu ta rivniv udobrennjia nay oho biolohichnu aktyvnist’ pid ozymoyu pshenytseyu [Influence of soil tillage systems and fertilization levels on its biological activity under winter wheat]. Agrobiology, 2, 131–134 (in Ukrainian).
Pavlichenko, A. A., Bondarenko, O. M., & Vakhnii, S. P. (2015). Zmina biolohich-noji aktyvnosti gruntu pid vyko-vivsianoju sumishkoju za riznykh system obrobitku gruntu ta rivniv udobrennia [Change in biological activity of soil under vetch-oats mixture at different systems of tillage and fertilization levels]. Agrobiology, 1, 31–34 (in Ukrainian).
Pogromska, Y. A. (2019). Mikrobiolohichna aktyvnist’ chornozemu zvychajnoho zalezhno vid obrobitku gruntu [The microbiological activity of chernozem ordinary depending on the technological load of the soil]. Bulletin of the Uman National University of Horticulture, 2, 33–38 (in Ukrainian).
Prymak, I., Levandovska, S., Panchenko, O., Panchenko, I., Voitovyk, M., Karpen-ko, V., & Martyniuk, I. (2019). Biolohichna aktyvnist’ chornozemu typovoho za riznykh system osnovnoho obrobitku ta udobrennia kultur korotkorotatsijnoji sivozminy [Biological activity of typical chernozemic soil under different systems of main tillage and crops fertilisation of a short crop rotation]. Agrobiology, 2, 43–58 (in Ukrainian).
Reicosky, D. C. (2008). Carbon sequestration and environmental benefits from no-till systems. In: Goddard, T., Zoebisch, M., Gan, Y., Ellis, W., Watson, A., & Sombatpanit, S. (Eds.). No-till farming systems. World Association of Soil and Water Conservation, Beijing. Special publication, (3), 43–58.
Rusu, T., Ioana Moraru, P., Bogdan, I., & Ioan Pop, A. (2016). Effects of tillage practices on soil organic carbon and soil respiration. In: de Rooij, G. (Ed.). EGU General Assembly Conference Abstracts (April 17–22, 2016). European Geosciences Union, Vienna. P. 3300.
Sain, G., Loboguerrero, A. M., Corner-Dolloff, C., Lizarazo, M., Nowak, A., Martínez-Barón, D., & Andrieu, N. (2017). Costs and benefits of climate-smart agriculture: The case of the dry corridor in Guatemala. Agricultural Systems, 151, 163–173.
Senchuk, S. M., & Krykunova, O. V. (2009). Efektyvnist’ biolohichno aktyvnykh preparativ za vyrosgchuvannia yachmeniu yaroho [Efficiency of biological preparations in spring barley cultivation]. Agriculture, 81, 33–38 (in Ukrainian).
Sokolov, K. K., & Marchenko, O. M. (2009). Zabur’yanenist’ posiviv soji ta biolohichna aktyvnist’ gruntu pry zastosuvanni riznykh sposobiv yoho obrobitku i herbitsydiv [Weed content in soybean planting and biological activity of soil using methods of basic soil cultivation and herbicides]. Agrarian Bulletin of the Black Sea Littoria, 50, 170–175 (in Ukrainian).
Sundermeier, A. P., Islam, K. R., Raut, Y., Reeder, R. C., & Dick, W. A. (2011). Continuous no‐till impacts on soil biophysical carbon sequestration. Soil Science Society of America Journal, 75(5), 1779–1788.
Tanchik, S. P., & Mykolenko, I. A. (2016). Vplyv nuliovoho ta tradytsijnoho obrobitkiv gruntu nay joho biolohichnu aktyvnist [Influence of zero and traditional cultivation on its biological activity]. Scientific Bulletin of the NULES, Agronomy, 235, 121–128 (in Ukrainian).
Tanchyk, S. P., Tsentylo, L. V., & Tsyuk, O. A. (2022). Balance of nitrogen, phos-phorus, potassium in the soil depending on farming systems in crop rotation. Agrology, 5(3), 92–96.
Taylor, M. (2017). Climate-smart agriculture: What is it good for? The Journal of Peasant Studies, 45(1), 1–24.
Tsyliuryk, O. I., Kulik, A. F., & Gonchar, N. V. (2017). Biolohochna aktyvnist’ gruntu za riznykh sposobiv yoho obrobitku ta udobrennia v posivakh soniashnyku [Biological activity of soil depending on different tillage and fertilization in sunflower crops]. Herald of Dnipropetrovsk State Agrarian and Economic University, 44, 42–48 (in Ukrainian).
Tsyliuryk, O. I., Shevchenko, S. M., Gonchar, N. V., Shevchenko, O. M., Dereve-nets-Shevchenko, K. A., & Svets, N. V. (2021). Biolohichna aktyvnist’ gruntu korotkorotatsijnoji sivozminy za maksymal’noho nasychennia soniashnykom [Soil biological activity of short rotation crop at the maximum saturation with sunflower]. Scientific and Technical Bulletin of the Institute of Oilseed Crops NAAS, 30, 105–115 (in Ukrainian).
Vydynivska, O. V. (2012). Vplyv nuliovoho obrobitku na biolohichnu aktyvnist’ chornozemu pivdennoho [Influence of zero tillage on biological activity of southern chernozem]. Agrarian Bulletin of the Black Sea Littoria, 1, 144–148 (in Ukrainian).
Wang, X., Wang, X., Geng, P., Yang, Q., Chen, K., Liu, N., Fan, Y., Zhan, X., & Han, X. (2021). Effects of different returning method combined with decom-poser on decomposition of organic components of straw and soil fertility. Scientific Reports, 11(1), 15495.
Wang, X., Xu, X., Qiu, S., Zhao, S., & He, P. (2023). Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis. Journal of Cleaner Production, 399, 136686.
Yan, Q., Wu, L., Dong, F., Yan, S., Li, F., Jia, Y., Zhang, J., Zhang, R., & Huang, X. (2024). Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields. Journal of Integrative Agriculture, 23(1), 251–266.
Yeshchenko, L. V. (2011). Do metodyky vyznachennia biolohichnoji aktyvnosti gruntu [Onthe methodology of soil biological activity]. Collection of Scientific Works of the Uman National University of Horticulture, 77, 21–26 (in Ukrainian).
Yurkevich, E. A., & Voytsekhovskaya, O. S. (2012). Vplyv riznykh system obro-bitku gruntu na yoho biolohichnu aktyvnist’ ta produktyvnist’ yachmeniu ozymoho u korotkorotatsijnykh sivozminakh Pivdennoho Stepu Ukrajiny [The influence of different tillage systems on biological activity of soil and productivity of winter barley short rotation of crops in the Southern Steppe of Ukraine]. Agrarian Bulletin of the Black Sea Littoria, 61, 1–5 (in Ukrainian).
Zhang, Y., Zhang, H., Chen, J., & Chen, F. (2009). Tillage effects on soil respiration and contributions of its components in winter wheat field. Scientia Agricultura Sinica, 42(9), 3354–3360.
Zhao, J., Liu, D., & Huang, R. (2023). A review of climate-smart agriculture: Recent advancements, challenges, and future directions. Sustainability, 15(4), 3404.

Comments (0)

No login
gif