Buratta, S., Tancini, B., Sagini, K., Delo, F., Chiaradia, E., Urbanelli, L., & Emiliani, C. (2020). Lysosomal exocytosis, exosome release and secretory autophagy: The autophagic-and endo-lysosomal systems go extracellular. International journal of molecular sciences., 21(7), 2576.
Article CAS PubMed PubMed Central Google Scholar
Shi, R., Wang, P. Y., Li, X. Y., Chen, J. X., Li, Y., Zhang, X. Z., Zhang, C. G., Jiang, T., Li, W. B., Ding, W., & Cheng, S. J. (2015). Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget, 6(29), 26971.
Article PubMed PubMed Central Google Scholar
Pisitkun, T., Shen, R. F., & Knepper, M. A. (2004). Identification and proteomic profiling of exosomes in human urine. Proceedings of the National Academy of Sciences., 101(36), 13368–13373.
Zlotogorski-Hurvitz, A., Dayan, D., Chaushu, G., Korvala, J., Salo, T., Sormunen, R., & Vered, M. (2015). Human saliva-derived exosomes: Comparing methods of isolation. Journal of Histochemistry & Cytochemistry., 63(3), 181–189.
Li, Z., Wang, Y., Xiao, K., Xiang, S., Li, Z., & Weng, X. (2018). Emerging role of exosomes in the joint diseases. Cellular Physiology and Biochemistry., 47(5), 2008–2017.
Article CAS PubMed Google Scholar
Liu, S. L., Sun, P., Li, Y., Liu, S. S., & Lu, Y. (2019). Exosomes as critical mediators of cell-to-cell communication in cancer pathogenesis and their potential clinical application. Translational Cancer Research., 8(1), 298.
Article CAS PubMed PubMed Central Google Scholar
Mosquera-Heredia, M. I., Morales, L. C., Vidal, O. M., Barcelo, E., Silvera-Redondo, C., Vélez, J. I., & Garavito-Galofre, P. (2021). Exosomes: Potential disease biomarkers and new therapeutic targets. Biomedicines., 9(8), 1061.
Article PubMed PubMed Central Google Scholar
Hawker, G. A., & King, L. K. (2022). The burden of osteoarthritis in older adults. Clinics in Geriatric Medicine., 38(2), 181–192.
He, Y., Li, Z., Alexander, P. G., Ocasio-Nieves, B. D., Yocum, L., Lin, H., & Tuan, R. S. (2020). Pathogenesis of osteoarthritis: Risk factors, regulatory pathways in chondrocytes, and experimental models. Biology., 9(8), 194.
Article CAS PubMed PubMed Central Google Scholar
Uivaraseanu, B., Vesa, C. M., Tit, D. M., Abid, A., Maghiar, O., Maghiar, T. A., Hozan, C., Nechifor, A. C., Behl, T., Patrascu, J. M., & Bungau, S. (2022). Therapeutic approaches in the management of knee osteoarthritis. Experimental and Therapeutic Medicine., 23(5), 1–6.
Fan, W. J., Liu, D., Pan, L. Y., Wang, W. Y., Ding, Y. L., Zhang, Y. Y., Ye, R. X., Zhou, Y., An, S. B., & Xiao, W. F. (2022). Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Frontiers in Cell and Developmental Biology., 26(10), 949690.
Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 33(3), 967–978.
Article CAS PubMed Google Scholar
Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology., 13(3), 269–288.
Article CAS PubMed Google Scholar
Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry., 262(19), 9412–9420.
Article CAS PubMed Google Scholar
Valenzuela, M. M., Ferguson Bennit, H. R., Gonda, A., Diaz Osterman, C. J., Hibma, A., Khan, S., & Wall, N. R. (2015). Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenvironment., 8, 65–73.
Article CAS PubMed PubMed Central Google Scholar
Williams, R. L., & Urbé, S. (2007). The emerging shape of the ESCRT machinery. Nature reviews Molecular cell biology., 8(5), 355–368.
Article CAS PubMed Google Scholar
Yue, B., Yang, H., Wang, J., Ru, W., Wu, J., Huang, Y., Lan, X., Lei, C., & Chen, H. (2020). Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Proliferation., 53(7), e12857.
Article CAS PubMed PubMed Central Google Scholar
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977.
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S., & Li, P. (2020). Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International Journal of Nanomedicine., 22, 6917–6934.
Shu, S. L., Yang, Y., Allen, C. L., Hurley, E., Tung, K. H., Minderman, H., Wu, Y., & Ernstoff, M. S. (2020). Purity and yield of melanoma exosomes are dependent on isolation method. Journal of Extracellular Vesicles., 9(1), 1692401.
Patel, G. K., Khan, M. A., Zubair, H., Srivastava, S. K., Khushman, M. D., Singh, S., & Singh, A. P. (2019). Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports., 9(1), 5335.
Article PubMed PubMed Central Google Scholar
Tang, Y. T., Huang, Y. Y., Zheng, L., Qin, S. H., Xu, X. P., An, T. X., Xu, Y., Wu, Y. S., Hu, X. M., Ping, B. H., & Wang, Q. (2017). Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International Journal of Molecular Medicine., 40(3), 834–844.
Article CAS PubMed PubMed Central Google Scholar
Diaz, G., Bridges, C., Lucas, M., Cheng, Y., Schorey, J. S., Dobos, K. M., & Kruh-Garcia, N. A. (2018). Protein digestion, ultrafiltration, and size exclusion chromatography to optimize the isolation of exosomes from human blood plasma and serum. JoVE (Journal of Visualized Experiments)., 134, e57467.
Yu, L. L., Zhu, J., Liu, J. X., Jiang, F., Ni, W. K., Qu, L. S., Ni, R. Z., Lu, C. H., & Xiao, M. B. (2018). A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Research International., 26, 2018.
Zeringer, E., Barta, T., Li, M., & Vlassov, A. V. (2015). Strategies for isolation of exosomes. Cold Spring Harbor Protocols., 2015(4), 074476.
Momen-Heravi, F., Balaj, L., Alian, S., Trachtenberg, A. J., & Kuo, W. P. (2012). Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Frontiers in Physiology., 29(3), 26975.
Sall, I. M., & Flaviu, T. A. (2023). Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2023.1215650
Article PubMed PubMed Central Google Scholar
Uddin, M. J., Mohite, P., Munde, S., Ade, N., Oladosu, T. A., Chidrawar, V. R., Patel, R., Bhattacharya, S., Paliwal, H., & Singh, S. (2024). Extracellular vesicles: The future of therapeutics and drug delivery systems. Intelligent Pharmacy. https://doi.org/10.1016/j.ipha.2024.02.004
Sharma, P., Ludwig, S., Muller, L., Hong, C. S., Kirkwood, J. M., Ferrone, S., & Whiteside, T. L. (2018). Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. Journal of Extracellular Vesicles., 7(1), 1435138.
Article PubMed PubMed Central Google Scholar
Rider, M. A., Hurwitz, S. N., & Meckes, D. G. (2016). ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific Reports., 6(1), 1–4.
Yang, D., Zhang, W., Zhang, H., Zhang, F., Chen, L., Ma, L., Larcher, L. M., Chen, S., Liu, N., Zhao, Q., & Tran, P. H. (2020). Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics. Theranostics., 10(8), 3684.
Article CAS PubMed PubMed Central Google Scholar
Slyusarenko, M., Nikiforova, N., Sidina, E., Nazarova, I., Egorov, V., Garmay, Y., Merdalimova, A., Yevlampieva, N., Gorin, D., & Malek, A. (2021). Formation and evaluation of a two-phase polymer system in human plasma as a method for extracellular nanovesicle isolation. Polymers, 13(3), 458.
Comments (0)