Mueller, T. L., Wirth, A. J., van Lenthe, G. H., Goldhahn, J., Schense, J., Jamieson, V., et al. (2011). Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: A non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis. Journal of Tissue Engineering and Regenerative Medicine, 5(5), 415–420. https://doi.org/10.1002/term.325
Younger, E. M., & Chapman, M. W. (1989). Morbidity at bone graft donor sites. Journal of Orthopaedic Trauma, 3(3), 192.
Article CAS PubMed Google Scholar
Robinson, P. G., Abrams, G. D., Sherman, S. L., Safran, M. R., & Murray, I. R. (2020). Autologous bone grafting. Operative Techniques in Sports Medicine, 28(4), 150780. https://doi.org/10.1016/j.otsm.2020.150780
Tang, G., Liu, Z., Liu, Y., Yu, J., Wang, X., Tan, Z., et al. (2021). Recent Trends in the Development of Bone Regenerative Biomaterials. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2021.665813
Article PubMed PubMed Central Google Scholar
Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials, 2(4), 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007
Article PubMed PubMed Central Google Scholar
Koons, G. L., Diba, M., & Mikos, A. G. (2020). Materials design for bone-tissue engineering. Nature Reviews Materials, 5(8), 584–603. https://doi.org/10.1038/s41578-020-0204-2
Echave, M. C., Sánchez, P., Pedraz, J. L., & Orive, G. (2017). Progress of gelatin-based 3D approaches for bone regeneration. Journal of Drug Delivery Science and Technology, 42, 63–74. https://doi.org/10.1016/j.jddst.2017.04.012
Zha, K., Tian, Y., Panayi, A. C., Mi, B., & Liu, G. (2022). Recent advances in enhancement strategies for osteogenic differentiation of mesenchymal stem cells in bone tissue engineering. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2022.824812
Article PubMed PubMed Central Google Scholar
Mazzoni, E., Mazziotta, C., Iaquinta, M. R., Lanzillotti, C., Fortini, F., D’Agostino, A., et al. (2021). Enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by a hybrid hydroxylapatite/collagen scaffold. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2020.610570
Article PubMed PubMed Central Google Scholar
Rada, T., Reis, R. L., & Gomes, M. E. (2009). Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Engineering Part B: Reviews, 15(2), 113–125. https://doi.org/10.1089/ten.teb.2008.0423
Article CAS PubMed Google Scholar
Mende, W., Götzl, R., Kubo, Y., Pufe, T., Ruhl, T., & Beier, J. P. (2021). The role of adipose stem cells in bone regeneration and bone tissue engineering. Cells, 10(5), 975. https://doi.org/10.3390/cells10050975
Article CAS PubMed PubMed Central Google Scholar
Thomas, L. V., & Nair, P. D. (2012). Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold. Journal of Biomaterials Science, Polymer Edition, 23(16), 2069–2087. https://doi.org/10.1163/092050611X607148
Article CAS PubMed Google Scholar
Aghajanian, P., & Mohan, S. (2018). The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Research, 6(1), 1–9. https://doi.org/10.1038/s41413-018-0021-z
Galea, G. L., Zein, M. R., Allen, S., & Francis-West, P. (2021). Making and shaping endochondral and intramembranous bones. Developmental Dynamics, 250(3), 414–449. https://doi.org/10.1002/dvdy.278
Article CAS PubMed Google Scholar
Kenkre, J., & Bassett, J. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 55(3), 308–327. https://doi.org/10.1177/0004563218759371
Article CAS PubMed Google Scholar
Perić, K. Ž, Rider, P., Alkildani, S., Retnasingh, S., Pejakić, M., Schnettler, R., et al. (2020). An introduction to bone tissue engineering. The International Journal of Artificial Organs, 43(2), 69–86. https://doi.org/10.1177/0391398819876286
Almouemen, N., Kelly, H. M., & O’Leary, C. (2019). Tissue engineering: understanding the role of biomaterials and biophysical forces on cell functionality through computational and structural biotechnology analytical methods. Computational and Structural Biotechnology Journal, 17, 591–598. https://doi.org/10.1016/j.csbj.2019.04.008
Article CAS PubMed PubMed Central Google Scholar
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., et al. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001
Ramzan, F., Salim, A., & Khan, I. (2023). Osteochondral tissue engineering dilemma: scaffolding trends in regenerative medicine. Stem Cell Reviews and Reports, 19(6), 1615–1634. https://doi.org/10.1007/s12015-023-10545-x
Khan, M. U. A., Aslam, M. A., Bin Abdullah, M. F., Hasan, A., Shah, S. A., & Stojanović, G. M. (2023). Recent perspective of polymeric biomaterial in tissue engineering– a review. Materials Today Chemistry, 34, 101818. https://doi.org/10.1016/j.mtchem.2023.101818
Echave, C. M., Burgo, S. L., Pedraz, L. J., & Orive, G. (2017). Gelatin as biomaterial for tissue engineering. Current Pharmaceutical Design, 23(24), 3567–3584. https://doi.org/10.2174/0929867324666170511123101
Article CAS PubMed Google Scholar
Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., et al. (2022). Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics, 14(6), 1177. https://doi.org/10.3390/pharmaceutics14061177
Article CAS PubMed PubMed Central Google Scholar
Yin, S., Zhang, W., Zhang, Z., & Jiang, X. (2019). recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Advanced Healthcare Materials, 8(10), 1801433. https://doi.org/10.1002/adhm.201801433
Hernandez, J. L., & Woodrow, K. A. (2022). Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Advanced Healthcare Materials, 11(9), 2102087. https://doi.org/10.1002/adhm.202102087
Abbasi, N., Hamlet, S., Love, R. M., & Nguyen, N.-T. (2020). Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1), 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007
Madihally, S. V., & Matthew, H. W. T. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133–1142. https://doi.org/10.1016/S0142-9612(99)00011-3
Article CAS PubMed Google Scholar
Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: recent advances and challenges critical reviews&trade. Biomedical Engineering, 40(5), 363–408.
Marion N. W., & Mao J. J. (2006). Mesenchymal Stem Cells and Tissue Engineering. In: Methods in Enzymology Stem Cell Tools and Other Experimental Protocols, Academic Press, 339–361, doi: https://doi.org/10.1016/S0076-6879(06)20016-8
Shibli, J. A., Nagay, B. E., Suárez, L. J., Urdániga, H. C., Bertolini, M., Barão, V. A. R., et al. (2022). Bone tissue engineering using osteogenic cells: from the bench to the clinical application. Tissue Engineering Part C: Methods, 28(5), 179–192. https://doi.org/10.1089/ten.tec.2022.0021
Article CAS PubMed Google Scholar
Komori, T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and Tissue Research, 339(1), 189–195. https://doi.org/10.1007/s00441-009-0832-8
Comments (0)