A Gelatin-Based Biomimetic Scaffold Promoting Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells

Mueller, T. L., Wirth, A. J., van Lenthe, G. H., Goldhahn, J., Schense, J., Jamieson, V., et al. (2011). Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: A non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis. Journal of Tissue Engineering and Regenerative Medicine, 5(5), 415–420. https://doi.org/10.1002/term.325

Article  PubMed  Google Scholar 

Younger, E. M., & Chapman, M. W. (1989). Morbidity at bone graft donor sites. Journal of Orthopaedic Trauma, 3(3), 192.

Article  CAS  PubMed  Google Scholar 

Robinson, P. G., Abrams, G. D., Sherman, S. L., Safran, M. R., & Murray, I. R. (2020). Autologous bone grafting. Operative Techniques in Sports Medicine, 28(4), 150780. https://doi.org/10.1016/j.otsm.2020.150780

Article  Google Scholar 

Tang, G., Liu, Z., Liu, Y., Yu, J., Wang, X., Tan, Z., et al. (2021). Recent Trends in the Development of Bone Regenerative Biomaterials. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2021.665813

Article  PubMed  PubMed Central  Google Scholar 

Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials, 2(4), 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007

Article  PubMed  PubMed Central  Google Scholar 

Koons, G. L., Diba, M., & Mikos, A. G. (2020). Materials design for bone-tissue engineering. Nature Reviews Materials, 5(8), 584–603. https://doi.org/10.1038/s41578-020-0204-2

Article  CAS  Google Scholar 

Echave, M. C., Sánchez, P., Pedraz, J. L., & Orive, G. (2017). Progress of gelatin-based 3D approaches for bone regeneration. Journal of Drug Delivery Science and Technology, 42, 63–74. https://doi.org/10.1016/j.jddst.2017.04.012

Article  CAS  Google Scholar 

Zha, K., Tian, Y., Panayi, A. C., Mi, B., & Liu, G. (2022). Recent advances in enhancement strategies for osteogenic differentiation of mesenchymal stem cells in bone tissue engineering. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2022.824812

Article  PubMed  PubMed Central  Google Scholar 

Mazzoni, E., Mazziotta, C., Iaquinta, M. R., Lanzillotti, C., Fortini, F., D’Agostino, A., et al. (2021). Enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by a hybrid hydroxylapatite/collagen scaffold. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2020.610570

Article  PubMed  PubMed Central  Google Scholar 

Rada, T., Reis, R. L., & Gomes, M. E. (2009). Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Engineering Part B: Reviews, 15(2), 113–125. https://doi.org/10.1089/ten.teb.2008.0423

Article  CAS  PubMed  Google Scholar 

Mende, W., Götzl, R., Kubo, Y., Pufe, T., Ruhl, T., & Beier, J. P. (2021). The role of adipose stem cells in bone regeneration and bone tissue engineering. Cells, 10(5), 975. https://doi.org/10.3390/cells10050975

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas, L. V., & Nair, P. D. (2012). Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold. Journal of Biomaterials Science, Polymer Edition, 23(16), 2069–2087. https://doi.org/10.1163/092050611X607148

Article  CAS  PubMed  Google Scholar 

Aghajanian, P., & Mohan, S. (2018). The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Research, 6(1), 1–9. https://doi.org/10.1038/s41413-018-0021-z

Article  CAS  Google Scholar 

Galea, G. L., Zein, M. R., Allen, S., & Francis-West, P. (2021). Making and shaping endochondral and intramembranous bones. Developmental Dynamics, 250(3), 414–449. https://doi.org/10.1002/dvdy.278

Article  CAS  PubMed  Google Scholar 

Kenkre, J., & Bassett, J. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 55(3), 308–327. https://doi.org/10.1177/0004563218759371

Article  CAS  PubMed  Google Scholar 

Perić, K. Ž, Rider, P., Alkildani, S., Retnasingh, S., Pejakić, M., Schnettler, R., et al. (2020). An introduction to bone tissue engineering. The International Journal of Artificial Organs, 43(2), 69–86. https://doi.org/10.1177/0391398819876286

Article  Google Scholar 

Almouemen, N., Kelly, H. M., & O’Leary, C. (2019). Tissue engineering: understanding the role of biomaterials and biophysical forces on cell functionality through computational and structural biotechnology analytical methods. Computational and Structural Biotechnology Journal, 17, 591–598. https://doi.org/10.1016/j.csbj.2019.04.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., et al. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

Article  PubMed  Google Scholar 

Ramzan, F., Salim, A., & Khan, I. (2023). Osteochondral tissue engineering dilemma: scaffolding trends in regenerative medicine. Stem Cell Reviews and Reports, 19(6), 1615–1634. https://doi.org/10.1007/s12015-023-10545-x

Article  PubMed  Google Scholar 

Khan, M. U. A., Aslam, M. A., Bin Abdullah, M. F., Hasan, A., Shah, S. A., & Stojanović, G. M. (2023). Recent perspective of polymeric biomaterial in tissue engineering– a review. Materials Today Chemistry, 34, 101818. https://doi.org/10.1016/j.mtchem.2023.101818

Article  CAS  Google Scholar 

Echave, C. M., Burgo, S. L., Pedraz, L. J., & Orive, G. (2017). Gelatin as biomaterial for tissue engineering. Current Pharmaceutical Design, 23(24), 3567–3584. https://doi.org/10.2174/0929867324666170511123101

Article  CAS  PubMed  Google Scholar 

Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., et al. (2022). Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics, 14(6), 1177. https://doi.org/10.3390/pharmaceutics14061177

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin, S., Zhang, W., Zhang, Z., & Jiang, X. (2019). recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Advanced Healthcare Materials, 8(10), 1801433. https://doi.org/10.1002/adhm.201801433

Article  CAS  Google Scholar 

Hernandez, J. L., & Woodrow, K. A. (2022). Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Advanced Healthcare Materials, 11(9), 2102087. https://doi.org/10.1002/adhm.202102087

Article  CAS  Google Scholar 

Abbasi, N., Hamlet, S., Love, R. M., & Nguyen, N.-T. (2020). Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1), 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007

Article  Google Scholar 

Madihally, S. V., & Matthew, H. W. T. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133–1142. https://doi.org/10.1016/S0142-9612(99)00011-3

Article  CAS  PubMed  Google Scholar 

Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: recent advances and challenges critical reviews&trade. Biomedical Engineering, 40(5), 363–408.

Google Scholar 

Marion N. W., & Mao J. J. (2006). Mesenchymal Stem Cells and Tissue Engineering. In: Methods in Enzymology Stem Cell Tools and Other Experimental Protocols, Academic Press, 339–361, doi: https://doi.org/10.1016/S0076-6879(06)20016-8

Shibli, J. A., Nagay, B. E., Suárez, L. J., Urdániga, H. C., Bertolini, M., Barão, V. A. R., et al. (2022). Bone tissue engineering using osteogenic cells: from the bench to the clinical application. Tissue Engineering Part C: Methods, 28(5), 179–192. https://doi.org/10.1089/ten.tec.2022.0021

Article  CAS  PubMed  Google Scholar 

Komori, T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and Tissue Research, 339(1), 189–195. https://doi.org/10.1007/s00441-009-0832-8

Article  CAS 

Comments (0)

No login
gif