Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci 97(14):8110–8115
Article CAS PubMed PubMed Central Google Scholar
Bao B, Hu J, Bao H, et al (2023a) Memristor-coupled dual-neuron mapping model: initials-induced coexisting firing patterns and synchronization activities. Cognit Neurodyn pp 1–17
Bao H, Yu X, Xu Q et al (2023) Three-dimensional memristive morris-lecar model with magnetic induction effects and its fpga implementation. Cogn Neurodyn 17(4):1079–1092
Bu T, Fang W, Ding J, et al (2023) Optimal ann-snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint arXiv:2303.04347
Chen T, Wang L, Duan S (2020) Implementation of circuit for reconfigurable memristive chaotic neural network and its application in associative memory. Neurocomputing 380:36–42
Cheng Y, Wang D, Zhou P, et al (2017) A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282
Davies M, Srinivasa N, Lin TH et al (2018) Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1):82–99
Deco G, Cruzat J, Kringelbach ML (2019) Brain songs framework used for discovering the relevant timescale of the human brain. Nat Commun 10(1):583
Article CAS PubMed PubMed Central Google Scholar
Deng S, Li Y, Zhang S, et al (2022) Temporal efficient training of spiking neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946
Diehl PU, Cook M (2015) Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci 9
Fang W, Yu Z, Chen Y et al (2021) Deep residual learning in spiking neural networks. Adv Neural Inf Process Syst 34:21056–21069
Fang W, Yu Z, Chen Y, et al (2021b) Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2661–2671
Fang X, Liu D, Duan S et al (2022) Memristive lif spiking neuron model and its application in morse code. Front Neurosci 16:374
Furber SB, Galluppi F, Temple S et al (2014) The spinnaker project. Proc IEEE 102(5):652–665
Gerstner W, Kistler WM, Naud R, et al (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press
Guo Y, Tong X, Chen Y, et al (2022) Recdis-snn: rectifying membrane potential distribution for directly training spiking neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 326–335
Han B, Srinivasan G, Roy K (2020) Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 13558–13567
He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
He W, Wu Y, Deng L et al (2020) Comparing snns and rnns on neuromorphic vision datasets: similarities and differences. Neural Netw 132:108–120
Herranz-Celotti L, Rouat J (2022) Surrogate gradients design. arXiv preprint arXiv:2202.00282
Hu Y, Wu Y, Deng L, et al (2021) Advancing residual learning towards powerful deep spiking neural networks. arXiv preprint arXiv:2112.08954
Kheradpisheh SR, Ganjtabesh M, Thorpe SJ et al (2018) Stdp-based spiking deep convolutional neural networks for object recognition. Neural Netw 99:56–67
Kheradpisheh SR, Ganjtabesh M, Thorpe SJ et al (2018) Stdp-based spiking deep convolutional neural networks for object recognition. Neural Netw 99:56–67
Kim T, Hu S, Kim J et al (2021) Spiking neural network (snn) with memristor synapses having non-linear weight update. Front Comput Neurosci 15:646125
Article PubMed PubMed Central Google Scholar
Lee C, Sarwar SS, Panda P, et al (2020) Enabling spike-based backpropagation for training deep neural network architectures. Front Neurosci 119
Lee JH, Delbruck T, Pfeiffer M (2016) Training deep spiking neural networks using backpropagation. Front Neurosci 10:508
Article PubMed PubMed Central Google Scholar
Li D, Chen X, Becchi M, et al (2016) Evaluating the energy efficiency of deep convolutional neural networks on cpus and gpus. In: 2016 IEEE international conferences on big data and cloud computing (BDCloud), social computing and networking (SocialCom), sustainable computing and communications (SustainCom)(BDCloud-SocialCom-SustainCom), IEEE, pp 477–484
Li J, Zhou G, Li Y et al (2022) Reduction 93.7% time and power consumption using a memristor-based imprecise gradient update algorithm. Artif Intell Rev 55(1):657–677
Li Y, Deng S, Dong X, et al (2021a) A free lunch from ann: Towards efficient, accurate spiking neural networks calibration. In: International conference on machine learning, PMLR, pp 6316–6325
Li Y, Guo Y, Zhang S et al (2021) Differentiable spike: rethinking gradient-descent for training spiking neural networks. Adv Neural Inf Process Syst 34:23426–23439
Li Y, Kim Y, Park H, et al (2022b) Neuromorphic data augmentation for training spiking neural networks. In: European conference on computer vision, Springer, pp 631–649
Lian S, Shen J, Liu Q, et al (2023) Learnable surrogate gradient for direct training spiking neural networks. In: Proceedings of the thirty-second international joint conference on artificial intelligence, IJCAI-23, pp 3002–3010
Lin H, Wang C, Sun Y et al (2020) Firing multistability in a locally active memristive neuron model. Nonlinear Dyn 100(4):3667–3683
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
Mattia M, Del Giudice P (2002) Population dynamics of interacting spiking neurons. Phys Rev E 66(5):051917
Neftci EO, Mostafa H, Zenke F (2019) Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process Mag 36(6):51–63
Özçelik YB, Altan A (2023) Overcoming nonlinear dynamics in diabetic retinopathy classification: a robust ai-based model with chaotic swarm intelligence optimization and recurrent long short-term memory. Fractal and Fractional 7(8):598
Pei J, Deng L, Song S et al (2019) Towards artificial general intelligence with hybrid tianjic chip architecture. Nature 572(7767):106–111
Article CAS PubMed Google Scholar
Rathi N, Roy K (2020) Diet-snn: Direct input encoding with leakage and threshold optimization in deep spiking neural networks. arXiv preprint arXiv:2008.03658
Rathi N, Srinivasan G, Panda P, et al (2020) Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. arXiv preprint arXiv:2005.01807
Redmon J, Divvala S, Girshick R, et al (2016) You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
Roy K, Jaiswal A, Panda P (2019) Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784):607–617
Article CAS PubMed Google Scholar
Sengupta A, Ye Y, Wang R et al (2019) Going deeper in spiking neural networks: Vgg and residual architectures. Front Neurosci 13:95
Article PubMed PubMed Central Google Scholar
Shrestha SB, Orchard G (2018) Slayer: Spike layer error reassignment in time. Advances in neural information processing systems 31
Sun H, Cai W, Yang B, et al (2023) A synapse-threshold synergistic learning approach for spiking neural networks. IEEE Trans Cognitive Dev Syst
Tavanaei A, Ghodrati M, Kheradpisheh SR et al (2019) Deep learning in spiking neural networks. Neural Netw 111:47–63
Wu Y, Deng L, Li G et al (2018) Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci 12:331
Article PubMed PubMed Central Google Scholar
Xie Y, Ye Z, Li X, et al (2024) A novel memristive neuron model and its energy characteristics. Cognit Neurodyn pp 1–13
Xu Q, Ju Z, Ding S et al (2022) Electromagnetic induction effects on electrical activity within a memristive wilson neuron model. Cogn Neurodyn 16(5):1221–1231
Article PubMed PubMed Central Google Scholar
Yağ İ, Altan A (2022) Artificial intelligence-based robust hybrid algorithm design and implementation for real-time detection of plant diseases in agricultural environments. Biology 11(12):1732
Article PubMed PubMed Central Google Scholar
Yao X, Li F, Mo Z, et al (2022) Glif: A unified gated leaky integrate-and-fire neuron for spiking neural networks. arXiv preprint arXiv:2210.13768
Zhang T, Jia S, Cheng X et al (2021) Tuning convolutional spiking neural network with biologically plausible reward propagation. IEEE Trans Neural Netw Learn Syst 33(12):7621–7631
Zhao Z, Qu L, Wang L et al (2020) A memristor-based spiking neural network with high scalability and learning efficiency. IEEE Trans Circuits Syst II Express Briefs 67(5):931–935
Zheng H, Wu Y, Deng L, et al (2021) Going deeper with directly-trained larger spiking neural networks. In: Proceedings of the AAAI conference on artificial intelligence, pp 11062–11070
Zhou G, Ren Z, Wang L et al (2019) Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater Horiz 6(9):1877–1882
Zhou G, Ji X, Li J et al (2022) Second-order associative memory circuit hardware implemented by the evolution from battery-like capacitance to resistive switching memory. Iscience 25(10):105240
Article CAS PubMed PubMed Central Google Scholar
Zhou G, Wang Z, Sun B et al (2022) Volatile and nonvolatile memristive devices for neuromorphic computing. Adv Electron Mater 8(7):2101127
Zhu RJ, Zhang M, Zhao Q, et al (2024) Tcja-snn: Temporal-channel joint attention for spiking neural networks. IEEE Trans Neural Netw Learn Syst
Comments (0)