Development of a body movement detection system to avoid re-exposure during radiography

UNSCEAR: United Nations. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 2008. Report.

Berrington de Gonzalez A, Darby S, et al. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.

Article  PubMed  Google Scholar 

OECD. Medical technologies. In: Health at a glance 2019: OECD indicators. Paris: OECD Publishing; 2019.

World Health Organization. Efficacy and radiation safety in interventional radiology. Geneva: World Health Organization; 2000.

Google Scholar 

Suzuki S, Orito T, Ishisaka M, et al. Analysis of retakes in X-ray examination. J Jpn Health Phys Soc. 1992;27(2):149–55.

Article  Google Scholar 

Shiraishi J, Yamasaki M, Tanaka K, et al. Advantage of ROC analysis using the method for continuously distributed (non categorized) test results. Jpn J Radiol Technol. 1994;50(10):1726–34.

Article  Google Scholar 

Katsuragawa S. Subjective evaluation of medical images by using ROC analysis (luncheon freshers) (the 59th annual meeting). Jpn J Radiol Technol. 2004;60(3):309–16.

Article  Google Scholar 

Tanaka R, Shiraishi J, Takamori M, et al. ROC analysis for evaluating the detectability of image unsharpness due to the patient’s movement: phantom study comparing preview and diagnostic LCDs. Jpn J Radiol Technol. 2011;66(7):772–8.

Article  Google Scholar 

Matsumoto H, Sasa T, Uemura H, et al. Automatic detection of DR images in which the lungs are partially indistinguishable and of DR images that are motion blurred. Konica Minolta Technol Rep. 2014;11:57–61.

Google Scholar 

Naito S, Kawamura T, Yamada M. Development of image processing technology to improve the efficiency of portable imaging. Jpn J Radiol Technol. 2014;37(2):49–52.

Google Scholar 

Ono T, Ichikawa H, Kato T. Evaluation of detectability for patient’s movement in portable chest radiography: comparison of visual detection and motion detection software. Jpn J Radiol Technol. 2022;78(8):838–45.

Article  Google Scholar 

Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12:235–48.

Article  PubMed  Google Scholar 

Okumura E, Suzuki N, Okumura E, et al. Reduction of unsharpness caused by patient motion on radiography using deep learning. Med Imaging Inf Sci. 2023;40(1):7–14.

Google Scholar 

Hoshi S, Hanaizumi H, Fujita S. A system for children rushing out detection using dynamic background subtraction. Forum Inf Technol. 2012;11(3):205–8.

Google Scholar 

Matsuo T, Tan JK, Kim H, et al. Object detection from a moving camera. Biomed Fuzzy Syst Assoc. 2016;29:23–6.

Google Scholar 

Tachibana R, Hirano Y, Rui XU, et al. Extraction of ground glass opacities in lung CT images using subtraction. Med Imag Tech. 2014;32(3):196–202.

Google Scholar 

Horn BKP, Schunck BG. Determining optical flow. Artif Intell. 1981;17:185–203.

Article  Google Scholar 

Kearney JK, Thompson WB, Boley DL. Optical flow estimation: an error analysis of gradient-based methods with local optimization. IEEE Trans Pattern Anal Mach Intell. 1987;9:229–44.

Article  CAS  PubMed  Google Scholar 

Nomura A, Miike H, Koga K. Field theory approach for determining optical flow. Pattern Recognit. 1991;12:183–90.

Article  Google Scholar 

Nakamura A, Maeda M, Umeda M. Human tracking using inter-frame difference considered camera movement. Inst Image Electron Eng Jpn. 2007;36(2):123–30.

Google Scholar 

Tabata D, Isoda H, Kato K, et al. Myocardial motion analysis based on an optical flow method using tagged MR images. Radiol Phys Technol. 2018;11:202–11.

Article  PubMed  Google Scholar 

Hori T, Nami M, Iijima T. A technique of moving object detection and tracking in real environments. Rep Hokkaido Ind Res Inst. 2006;305:9–15.

Google Scholar 

Hagiwara A, Ohta Y. A live image analysis system for respiratory movement. J Hum Environ Eng. 2004;6(1):22–3.

Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif