Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746. https://doi.org/10.1007/978-1-4939-0554-6_7
Article CAS PubMed PubMed Central Google Scholar
Bloor AE, Cranenburgh RM (2006) An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol 72:2520–2525. https://doi.org/10.1128/AEM.72.4.2520-2525.2006
Article CAS PubMed PubMed Central Google Scholar
Cao M, Wang T, Ye R, Helmann JD (2002a) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. Mol Microbiol 45:1267–1276. https://doi.org/10.1046/j.1365-2958.2002.03050.x
Article CAS PubMed Google Scholar
Cao M, Kobel PA, Morshedi MM, Wu MF, Paddon C, Helmann JD (2002b) Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457. https://doi.org/10.1006/jmbi.2001.5372
Article CAS PubMed Google Scholar
Chambers SP, Prior SE, Barstow DA, Minton NP (1988) The pMTL nic− cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149. https://doi.org/10.1016/0378-1119(88)90606-3
Article CAS PubMed Google Scholar
Chmara H, Ripa S, Mignini F, Borowski E (1991) Bacteriolytic effect of teicoplanin. J Gen Microbiol 137:913–919. https://doi.org/10.1099/00221287-137-4-913
Article CAS PubMed Google Scholar
Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184:5661–5671. https://doi.org/10.1128/JB.184.20.5661-5671.2002
Article CAS PubMed PubMed Central Google Scholar
Delhaye A, Laloux G, Collet J-F (2019) The lipoprotein NlpE is a Cpx sensor that serves as a sentinel for protein sorting and folding defects in the Escherichia coli envelope. J Bacteriol 201:e00611-e618. https://doi.org/10.1128/JB.00611-18
Article CAS PubMed PubMed Central Google Scholar
Dubrac S, Bisicchia P, Devine KM, Msadek T (2008) A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322. https://doi.org/10.1111/j.1365-2958.2008.06483.x
Article CAS PubMed Google Scholar
Eiamphungporn W, Helmann JD (2008) The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol 67:830–848. https://doi.org/10.1111/j.1365-2958.2007.06090.x
Article CAS PubMed PubMed Central Google Scholar
Ezraty B, Henry C, Hérisse M, Denamur E, Barras F (2014) Commercial lysogeny broth culture media and oxidative stress: a cautious tale. Free Radic Biol Med 74:245–251. https://doi.org/10.1016/j.freeradbiomed.2014.07.010
Article CAS PubMed Google Scholar
Harwood CR, Cutting SM (1990) Genetic analysis. Molecular Biological Methods for Bacillus. John Wiley and Sons, Chichester
Helmann JD (2016) Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 30:122–132. https://doi.org/10.1016/j.mib.2016.02.002
Article CAS PubMed PubMed Central Google Scholar
Hyyryläinen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Prágai Z, Bron S, van Dijl JM, Kontinen VP (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41:1159–1172. https://doi.org/10.1046/j.1365-2958.2001.02576.x
Hyyryläinen HL, Sarvas M, Kontinen VP (2005) Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol 67:389–396. https://doi.org/10.1007/s00253-005-1898-1
Article CAS PubMed Google Scholar
Hyyryläinen HL, Pietiäinen M, Lundén T, Ekman A, Gardemeister M, Murtomäki-Repo S, Antelmann H, Hecker M, Valmu L, Sarvas M, Kontinen VP (2007) The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology 153:2126–2136. https://doi.org/10.1099/mic.0.2007/008680-0
Article CAS PubMed Google Scholar
Hyyryläinen HL, Marciniak BC, Dahncke K, Pietiäinen M, Courtin P, Vitikainen M, Seppala R, Otto A, Becher D, Chapot-Chartier MP, Kuipers OP, Kontinen VP (2010) Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis. Mol Microbiol 77:108–127. https://doi.org/10.1111/j.1365-2958.2010.07188.x
Article CAS PubMed Google Scholar
Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166. https://doi.org/10.1128/JB.00310-06
Article CAS PubMed PubMed Central Google Scholar
Kachan AV, Evtushenkov AN (2021) Acidification of the culture medium by products of glucose metabolism inhibits the synthesis of heterologous extracellular α-amylase by Bacillus subtilis 168. Appl Biochem Microbiol 57:443–451. https://doi.org/10.1134/S0003683821040062
Kajfasz JK, Mendoza JE, Gaca AO, Miller JH, Koselny KA, Giambiagi-Demarval M, Wellington M, Abranches J, Lemos JA (2012) The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect Immun 80:2265–2275. https://doi.org/10.1128/IAI.00026-12
Article CAS PubMed PubMed Central Google Scholar
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810. https://doi.org/10.1016/j.cell.2007.06.049
Article CAS PubMed Google Scholar
Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbio l50:1591–1604. https://doi.org/10.1046/j.1365-2958.2003.03786.x
Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896. https://doi.org/10.1128/AAC.48.8.2888-2896.2004
Article CAS PubMed PubMed Central Google Scholar
Murray EJ, Stanley-Wall NR (2010) The sensitivity of Bacillus subtilis to diverse antimicrobial compounds is influenced by Abh. Arch Microbiol 192:1059–1067. https://doi.org/10.1007/s00203-010-0630-4
Article CAS PubMed Google Scholar
Nakano S, Küster-Schöck E, Grossman AD, Zuber P (2003) Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci USA 100:13603–13608. https://doi.org/10.1073/pnas.2235180100
Article CAS PubMed PubMed Central Google Scholar
Noone D, Howell A, Collery R, Devine KM (2001) YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol 183:654–663. https://doi.org/10.1128/JB.183.2.654-663.2001
Article CAS PubMed PubMed Central Google Scholar
Noone D, Botella E, Butler C, Hansen A, Jende I, Devine KM (2012) Signal perception by the secretion stress-responsive CssRS two-component system in Bacillus subtilis. J Bacteriol 194:1800–1814. https://doi.org/10.1128/JB.05767-11
Comments (0)