Molecular Regulation of Cardiac Conduction System Development

Boyett MR. “And the beat goes on” the cardiac conduction system: The wiring system of the heart. Exp Physiol. 2009;94(10):1035–49. https://doi.org/10.1113/expphysiol.2009.046920.

Article  CAS  PubMed  Google Scholar 

Anderson RH, Boyett MR, Dobrzynski H, Moorman AFM. The anatomy of the conduction system: Implications for the clinical cardiologist. J Cardiovasc Transl Res. 2013;6(2):187–96. https://doi.org/10.1007/s12265-012-9433-0.

Article  PubMed  Google Scholar 

Gros DB, Jongsma HJ. Connexins in mammalian heart function. BioEssays. 1996;18(9):719–30. https://doi.org/10.1002/bies.950180907.

Article  CAS  PubMed  Google Scholar 

van Kempen MJA, Ten VI, Wessels A, et al. Differential connexin distribution accommodates cardiac function in different species. Microsc Res Tech. 1995;31(5):420–36. https://doi.org/10.1002/jemt.1070310511.

Article  PubMed  Google Scholar 

Marionneau C, Couette B, Liu J, et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol. 2005;562(1):223–34. https://doi.org/10.1113/jphysiol.2004.074047.

Article  CAS  PubMed  Google Scholar 

Gaborit N, Le Bouter S, Szuts V, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582(2):675–93. https://doi.org/10.1113/jphysiol.2006.126714.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrzynski H, Anderson RH, Atkinson A, et al. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther. 2013;139(2):260–88. https://doi.org/10.1016/j.pharmthera.2013.04.010.

Article  CAS  PubMed  Google Scholar 

Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82. https://doi.org/10.1152/physrev.00018.2007.

Article  CAS  PubMed  Google Scholar 

Difrancesco D. The role of the funny current in pacemaker activity. Circ Res. 2010;106(3):434–46. https://doi.org/10.1161/CIRCRESAHA.109.208041.

Article  CAS  PubMed  Google Scholar 

Kreuzberg MM, Willecke K, Bukauskas FF. Connexin-Mediated Cardiac Impulse Propagation: Connexin 30.2 Slows Atrioventricular Conduction in Mouse Heart. Trends Cardiovasc Med. 2006;16(8):266–72. https://doi.org/10.1016/j.tcm.2006.05.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delorme B, Dahl E, Jarry-guichard T, et al. Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn. 1995;204(4):358–71. https://doi.org/10.1002/aja.1002040403.

Article  CAS  PubMed  Google Scholar 

Gourdie RG, Harris BS, Bond J, et al. Development of the cardiac pacemaking and conduction system. Birth Defects Res Part C Embryo Today Rev. 2003;69(1):46–57. https://doi.org/10.1002/bdrc.10008.

Article  CAS  Google Scholar 

Gourdie RG, Mima T, Thompson RP, Mikawa T. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development. 1995;121(5):1423–31. https://doi.org/10.1242/dev.121.5.1423.

Article  CAS  PubMed  Google Scholar 

Miquerol L, Moreno-Rascon N, Beyer S, et al. Biphasic development of the mammalian ventricular conduction system. Circ Res. 2010;107(1):153–61. https://doi.org/10.1161/CIRCRESAHA.110.218156.

Article  CAS  PubMed  Google Scholar 

Miquerol L, Bellon A, Moreno N, et al. Resolving cell lineage contributions to the ventricular conduction system with a Cx40-GFP allele: A dual contribution of the first and second heart fields. Dev Dyn. 2013;242(6):665–77. https://doi.org/10.1002/dvdy.23964.

Article  CAS  PubMed  Google Scholar 

Später D, Abramczuk MK, Buac K, et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol. 2013;15(9):1098–106. https://doi.org/10.1038/ncb2824.

Article  CAS  PubMed  Google Scholar 

Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med. 2015;25(1):1–9. https://doi.org/10.1016/j.tcm.2014.08.009.

Article  CAS  PubMed  Google Scholar 

Liang X, Wang G, Lin L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res. 2013;113(4):399–407. https://doi.org/10.1161/CIRCRESAHA.113.301588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haïssaguerre M, Shah DC, Jaïs P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet. 2002;359(9307):677–8. https://doi.org/10.1016/S0140-6736(02)07807-8.

Article  PubMed  Google Scholar 

Durrer D, Van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total Excitation of the Isolated Human Heart. Circulation. 1970;41(6):899–912. https://doi.org/10.1161/01.CIR.41.6.899.

Article  CAS  PubMed  Google Scholar 

van Eif VWW, Stefanovic S, Mohan RA, Christoffels VM. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim Biophys Acta - Mol Cell Res. 2020;1867(3):118509. https://doi.org/10.1016/j.bbamcr.2019.07.004.

Article  CAS  PubMed  Google Scholar 

Kobayashi T, Maeda S, Ichise N, et al. The beginning of the calcium transient in rat embryonic heart. J Physiol Sci. 2011;61(2):141–9. https://doi.org/10.1007/s12576-010-0131-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishii K, Shibata Y. Mode and determination of the initial contraction stage in the mouse embryo heart. Anat Embryol (Berl). 2006;211(2):95–100. https://doi.org/10.1007/s00429-005-0065-x.

Article  PubMed  Google Scholar 

Chen CM, Miranda AMA, Bub G, Srinivas S. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities. Front Physiol. 2015;6(JAN):1–9. https://doi.org/10.3389/fphys.2014.00508.

Article  Google Scholar 

Stieber J, Herrmann S, Feil S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A. 2003;100(25):15235–40. https://doi.org/10.1073/pnas.2434235100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vedantham V, Galang G, Evangelista M, Deo RC, Srivastava D. RNA Sequencing of Mouse Sinoatrial Node Reveals an Upstream Regulatory Role for Islet-1 in Cardiac Pacemaker Cells. Circ Res. 2015;116(5):797–803. https://doi.org/10.1161/CIRCRESAHA.116.305913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai C-L, Liang X, Shi Y, et al. Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart. Dev Cell. 2003;5(6):877–89. https://doi.org/10.1016/S1534-5807(03)00363-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mommersteeg MTM, Domínguez JN, Wiese C, et al. The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res. 2010;87(1):92–101. https://doi.org/10.1093/cvr/cvq033.

Comments (0)

No login
gif