Oxygen-based autoregulation indices associated with clinical outcomes and spreading depolarization in aSAH

Abstract

Background Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH), however there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events.

Methods Subjects with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 second moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In subjects with subdural ECoG (electrocorticography) monitoring, SD was also scored. Associations between clinical outcomes using the mRS (modified Rankin Scale) and occurrence of either isolated or clustered SD was assessed.

Results 320 subjects were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors such as mFS and WFNS (World Federation of Neurosurgical Societies scale) were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern with a linear increase in probability below MAP of ∼100mmHg.

Autoregulation indices were available for intracranial pressure (ICP) measurements (PRx), PbtO2 from Licox (ORx), perfusion from the Bowman perfusion probe (CBFRx), and cerebral oxygen saturation measured by near infrared spectroscopy (OSRx). Only worse ORx and OSRx were associated with worse clinical outcomes. ORx and OSRx also were found to both increase in the hour prior to SD for both sporadic and clustered SD.

Conclusions Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

NIGMS grant: P20GM109089 (Shuttleworth, Carlson) NIH/NINDS grant: R01 NS128006 (Carlson)

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Not Applicable

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

UNM IRB# 10-159, 17-297, 20-390, and 21-044

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Not Applicable

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Not Applicable

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Not Applicable

Data Availability

Data are available with appropriate data use agreements and institutional approvals

Comments (0)

No login
gif