Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer. 2021;125(2):164–75. https://doi.org/10.1038/s41416-021-01328-7.
Article PubMed PubMed Central Google Scholar
Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst. 2000;92(14):1126–35. https://doi.org/10.1093/jnci/92.14.1126.
Article CAS PubMed Google Scholar
Anderson KN, Schwab RB, Martinez ME. Reproductive risk factors and breast cancer subtypes: a review of the literature. Breast Cancer Res Treat. 2014;144(1):1–10. https://doi.org/10.1007/s10549-014-2852-7.
Article PubMed PubMed Central Google Scholar
Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51. https://doi.org/10.1016/s1470-2045(12)70425-4.
Article PubMed Central Google Scholar
Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9. https://doi.org/10.1038/nrm3314.
Article CAS PubMed PubMed Central Google Scholar
Reznik E, Luna A, Aksoy BA, Liu EM, La K, Ostrovnaya I, et al. A landscape of metabolic variation across tumor types. Cell Syst. 2018;6(3):301-13.e3. https://doi.org/10.1016/j.cels.2017.12.014.
Article CAS PubMed PubMed Central Google Scholar
Sun C, Li T, Song X, Huang L, Zang Q, Xu J, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci U S A. 2019;116(1):52–7. https://doi.org/10.1073/pnas.1808950116.
Article CAS PubMed Google Scholar
Ren C, Liu J, Zhou J, Liang H, Wang Y, Sun Y, et al. Low levels of serum serotonin and amino acids identified in migraine patients. Biochem Biophys Res Commun. 2018;496(2):267–73. https://doi.org/10.1016/j.bbrc.2017.11.203.
Article CAS PubMed Google Scholar
van Roekel EH, Trijsburg L, Assi N, Carayol M, Achaintre D, Murphy N, et al. Circulating metabolites associated with alcohol intake in the European Prospective Investigation into Cancer and Nutrition Cohort. Nutrients. 2018;10(5):654. https://doi.org/10.3390/nu10050654.
Article CAS PubMed PubMed Central Google Scholar
Carayol M, Leitzmann MF, Ferrari P, Zamora-Ros R, Achaintre D, Stepien M, et al. Blood metabolic signatures of body mass index: a targeted metabolomics study in the EPIC cohort. J Proteome Res. 2017;16(9):3137–46. https://doi.org/10.1021/acs.jproteome.6b01062.
Article CAS PubMed PubMed Central Google Scholar
Schmidt JA, Rinaldi S, Ferrari P, Carayol M, Achaintre D, Scalbert A, et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. Am J Clin Nutr. 2015;102(6):1518–26. https://doi.org/10.3945/ajcn.115.111989.
Article CAS PubMed PubMed Central Google Scholar
Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38(Web Server issue):W71-7. https://doi.org/10.1093/nar/gkq329.
Article CAS PubMed PubMed Central Google Scholar
Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010;26(18):2342–4. https://doi.org/10.1093/bioinformatics/btq418.
Article CAS PubMed Google Scholar
Bro R, Kamstrup-Nielsen MH, Engelsen SB, Savorani F, Rasmussen MA, Hansen L, et al. Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics. 2015;11(5):1376–80. https://doi.org/10.1007/s11306-015-0793-8.
Article CAS PubMed PubMed Central Google Scholar
His M, Viallon V, Dossus L, Gicquiau A, Achaintre D, Scalbert A, et al. Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med. 2019;17(1):178. https://doi.org/10.1186/s12916-019-1408-4.
Article PubMed PubMed Central Google Scholar
Kühn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016;14:13. https://doi.org/10.1186/s12916-016-0552-3.
Article CAS PubMed PubMed Central Google Scholar
Lécuyer L, Victor Bala A, Deschasaux M, Bouchemal N, Nawfal Triba M, Vasson MP, et al. NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol. 2018;47(2):484–94. https://doi.org/10.1093/ije/dyx271.
Lécuyer L, Dalle C, Lyan B, Demidem A, Rossary A, Vasson MP, et al. Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort. Cancer Epidemiol Biomarkers Prev. 2019;28(8):1300–7. https://doi.org/10.1158/1055-9965.Epi-19-0154.
Yang PJ, Hou MF, Tsai EM, Liang SS, Chiu CC, Ou-Yang F, et al. Breast cancer is associated with methylation and expression of the a disintegrin and metalloproteinase domain 33 (ADAM33) gene affected by endocrine-disrupting chemicals. Oncol Rep. 2018;40(5):2766–77. https://doi.org/10.3892/or.2018.6675.
Article CAS PubMed Google Scholar
Ho TJ, Kuo CH, Wang SY, Chen GY, Tseng YJ. True ion pick (TIPick): a denoising and peak picking algorithm to extract ion signals from liquid chromatography/mass spectrometry data. J Mass Spectrom. 2013;48(2):234–42. https://doi.org/10.1002/jms.3154.
Article CAS PubMed Google Scholar
Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes (Lond). 2015;39(8):1241–8. https://doi.org/10.1038/ijo.2015.65.
Article CAS PubMed Google Scholar
Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7(5):872–81. https://doi.org/10.1038/nprot.2012.024.
Article CAS PubMed PubMed Central Google Scholar
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83. https://doi.org/10.1038/nprot.2011.335.
Article CAS PubMed Google Scholar
Yang J, Zhao X, Lu X, Lin X, Xu G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Front Mol Biosci. 2015;2:4. https://doi.org/10.3389/fmolb.2015.00004.
Article CAS PubMed PubMed Central Google Scholar
Wei R, Wang J, Su M, Jia E, Chen S, Chen T, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8(1):663. https://doi.org/10.1038/s41598-017-19120-0.
Article CAS PubMed PubMed Central Google Scholar
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–50. https://doi.org/10.1038/s41580-019-0123-5.
Comments (0)