Acuña CA (2006) Bahiagrass germplasm reproductive characterization, and breeding at the tetraploid level. MSc. Thesis, University of Florida, Gainesville, Florida
Acuña CA, Martínez EJ, Zilli AL, Brugnoli EA, Espinoza F, Marcón F, Urbani MH, Quarin CL (2019) Reproductive systems in Paspalum: relevance for germplasm collection and conservation, breeding techniques, and adoption of released cultivars. Front Plant Sci 10:1–17
Agharkar M, Lomba P, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flügge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5:791–801
Article CAS PubMed Google Scholar
Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: Myths and realities. Mol Breed 15:305–327
Altpeter F, James VA (2015) Genetic transformation of turf-type bahiagrass (Paspalum notatum Flügge) by biolistic gene transfer. Int Turfgrass Soc Res J 10:485–489
Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang KJ, Stewart CN Jr (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520
CAS PubMed PubMed Central Google Scholar
Bajaj S, Ran Y, Phillips J, Kularajathevan G, Pal S, Cohen D, Elborough K, Puthigae S (2006) A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep 25:651–659
Article CAS PubMed Google Scholar
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:1–10
Bertoncelli P (2018) Production and germination of Paspalum notatum seeds: response to nitrogen fertilization and cutting management. PhD. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Biol 48:297–326
Bovo OA, Mroginski LA (1989) Somatic embryogenesis and plant regeneration from cultured mature and immature embryos of Paspalum notatum (Gramineae). Plant Sci 65:217–223
Burton GW (1948) The method of reproduction in common Bahiagrass, Paspalum notatum. J Am Soc Agron 40:443–452
Castel B, Tomlinson L, Federica L, Yang Y, Jones JDG (2019) Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS ONE 14:e0204778
Article CAS PubMed PubMed Central Google Scholar
Colono C, Ortiz JPA, Permingeat HR, Souza ED, Siena LA, Spoto N, Galdeano F, Espinoza F, Leblanc O, Pessino SC (2019) A plant-specific TGS1 homolog influences gametophyte development in sexual tetraploid Paspalum notatum ovules. Front Plant Sci 10:1–14
Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16:1848–1857
Article CAS PubMed PubMed Central Google Scholar
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E (2022) Enteric methane mitigation interventions. Transl Anim Sci 6:1–16
Gates R, Quarin C, Pedreira C (2004) Bahiagrass. In: Warm-season (C4) grasses. American Society of Agronomy, Madison, Wisconsin
Giordano A, Liu Z, Panter SN, Dimech AM, Shang Y, Wijesinghe H, Fulgueras K, Ran Y, Mouradov A, Rochfort S, Patron NJ, Spangenberg GC (2014) Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA Reductase Gene. Transgenic Res 23:503–517
Article CAS PubMed PubMed Central Google Scholar
Giorello D, Sbrissia A, Da Silva S (2021) Herbage accumulation, morphological composition, and nutritive value of Paspalum notatum cv. INIA Sepé. Agrociencia Uruguay. https://doi.org/10.31285/agro.25.348
Gondo T, Tsuruta SI, Akashi R, Kawamura O, Hoffmann F (2005) Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J Plant Physiol 162:1367–1375
Article CAS PubMed Google Scholar
Grando MF, Franklin CI, Shatters RG (2002) Optimizing embryogenic callus production and plant regeneration from “Tifton 9” bahiagrass seed explants for genetic manipulation. Plant Cell Tiss Org Cult 71:213–222
Halpin C, Cooke SE, Barakate A, Amrani AE, Ryan MD (1999) Self-processing 2A-polyproteins - a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J 17:453–459
Article CAS PubMed Google Scholar
Hassan M, Zhang Y, Yuan G, De K, Chen JG, Muchero W, Tuskan GA, Qi Y, Yang X (2021) Construct design for CRISPR/Cas-based genome editing in plants. Trends Plant Sci 26:1133–1152
Article CAS PubMed Google Scholar
James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flügge) enhances abiotic stress tolerance. Transgenic Res 17:93–104
Article CAS PubMed Google Scholar
Mancini M, Woitovich N, Permingeat HR, Podio M, Siena LA, Ortiz JPA, Pessino SC, Felitti SA (2014) Development of a modified transformation platform for apomixis candidate genes research in Paspalum notatum (bahiagrass). In Vitro Cell Dev Biol - Plant 50:412–424
Marousky FJ, West SH (1990) Somatic embryogenesis and plant regeneration from cultured mature caryopses of bahiagrass (Paspalum notatum Flügge). Plant Cell Tiss Org Cult 20:125–129
May D, Sanchez S, Gilby J, Altpeter F (2023) Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass (Paspalum notatum Flügge) using CRISPR/Cas9. Front Plant Sci 14:1–19
McCulley RL, Bush LP, Carlisle AE, Huihua J, Nelson JA (2014) Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S. Front Chem 2:88
Article PubMed PubMed Central Google Scholar
Muguerza M, Gondo T, Ishigaki G, Akashi R (2014) Lignin content and digestibility in transgenic bahiagrass (Paspalum notatum Flügge) obtained by genetic manipulation of Cinnamyl alcohol dehydrogenase gene. Asian J Plant Sci 13:8–17
Muguerza M, Gondo T, Yoshida M, Kawakami A, Terami F, Yamada T, Akashi R (2013) Modification of the total soluble sugar content of the C4 grass Paspalum notatum expressing the wheat-derived sucrose: sucrose 1-fructosyltransferase and sucrose: Fructan 6-fructosyltransferase genes. Grassl Sci 59:196–204
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497
Ortiz JPA, Revale S, Siena LA, Ml P, Delgado L, Stein J, Leblanc O, Pessino SC (2017) A reference floral transcriptome of sexual and apomictic Paspalum notatum. BMC Genom 18:1–14
Panter S, Mouradov A, Badenhorst P, Martelotto L, Griffith M, Smith KF, Spangenberg GC (2017) Re-programming photosynthetic cells of perennial ryegrass (Lolium perenne L) for fructan biosynthesis through transgenic expression of fructan biosynthetic genes under the control of photosynthetic promoters. Agronomy 7:1–13
Qiao YM, Cattaneo M, Locatelli F, Lupotto E (1992) Plant regeneration from long term suspension culture-derived protoplasts of hexaploid wheat (Triticum aestivum L.). Plant Cell Rep 11:262–265
Reyno R, Narancio R, Speranza P, Do Canto J, López-Carro B, Hernández P, Burgueño J, Real D, Dalla Rizza M (2012) Molecular and cytogenetic characterization of a collection of bahiagrass (Paspalum notatum Flügge) native to Uruguay. Genet Resour Crop Evol 59:1823–1832
Sandhu S, Altpeter F (2008) Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flügge). Plant Cell Rep 27:1755–1765
Comments (0)