Exploring the Dose–Response Relationship Between Estimated Resistance Training Proximity to Failure, Strength Gain, and Muscle Hypertrophy: A Series of Meta-Regressions

Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci [Internet]. 2016;35:1073–82. https://doi.org/10.1080/02640414.2016.1210197.

Article  PubMed  Google Scholar 

Ralston GW, Kilgore L, Wyatt FB, Baker JS. The effect of weekly set volume on strength gain: a meta-analysis. Sports Med [Internet]. 2017;47:2585–601. https://doi.org/10.1007/s40279-017-0762-7.

Article  PubMed  Google Scholar 

Refalo MC, Hamilton DL, Paval DR, Gallagher IJ, Feros SA, Fyfe JJ. Influence of resistance training load on measures of skeletal muscle hypertrophy and improvements in maximal strength and neuromuscular task performance: a systematic review and meta-analysis. J Sports Sci [Internet]. 2021;39:1723–45. https://doi.org/10.1080/02640414.2021.1898094.

Article  PubMed  Google Scholar 

Lopez P, Radaelli R, Taaffe DR, Newton RU, Galvão DA, Trajano GS, et al. Resistance training load effects on muscle hypertrophy and strength gain: systematic review and network meta-analysis. Med Sci Sports Exerc [Internet]. 2020;53:1206–16. https://doi.org/10.1249/mss.0000000000002585.

Article  Google Scholar 

Schoenfeld BJ, Grgic J, Krieger J. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. J Sports Sci [Internet]. 2018;37:1286–95. https://doi.org/10.1080/02640414.2018.1555906.

Article  PubMed  Google Scholar 

Cuthbert M, Haff GG, Arent SM, Ripley N, McMahon JJ, Evans M, et al. Effects of variations in resistance training frequency on strength development in well-trained populations and implications for in-season athlete training: a systematic review and meta-analysis. Sports Med [Internet]. 2021;51:1967–82. https://doi.org/10.1007/s40279-021-01460-7.

Article  PubMed  Google Scholar 

Pelland JC, Robinson ZP, Remmert JF, Cerminaro RM, Benitez B, John TA, et al. Methods for controlling and reporting resistance training proximity to failure: current issues and future directions. Sports Med [Internet]. 2022;52:1461–72. https://doi.org/10.1007/s40279-022-01667-2.

Article  PubMed  Google Scholar 

Refalo MC, Helms ER, Hamilton DL, Fyfe JJ. Towards an improved understanding of proximity-to-failure in resistance training and its influence on skeletal muscle hypertrophy, neuromuscular fatigue, muscle damage, and perceived discomfort: a scoping review. J Sports Sci [Internet]. 2022;40:1369–91. https://doi.org/10.1080/02640414.2022.2080165.

Article  PubMed  Google Scholar 

Grgic J, Schoenfeld BJ, Orazem J, Sabol F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: a systematic review and meta-analysis. J Sport Health Sci [Internet]. 2022;11:202–11. https://doi.org/10.1016/j.jshs.2021.01.007.

Article  PubMed  Google Scholar 

Vieira AF, Umpierre D, Teodoro JL, Lisboa SC, Baroni BM, Izquierdo M, et al. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: a systematic review with meta-analysis. J Sport Sci [Internet]. 2021;35:1165–75. https://doi.org/10.1519/jsc.0000000000003936.

Article  Google Scholar 

Jukic I, Hooren BV, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. The effects of set structure manipulation on chronic adaptations to resistance training: a systematic review and meta-analysis. Sports Med [Internet]. 2021;51:1061–86. https://doi.org/10.1007/s40279-020-01423-4.

Article  PubMed  Google Scholar 

Davies TB, Tran DL, Hogan CM, Haff GG, Latella C. Chronic effects of altering resistance training set configurations using cluster sets: a systematic review and meta-analysis. Sports Med [Internet]. 2021;51:707–36. https://doi.org/10.1007/s40279-020-01408-3.

Article  PubMed  Google Scholar 

Jukic I, Helms ER, McGuigan MR, Garcìa-Ramos A. Using cluster and rest redistribution set structures as alternatives to resistance training prescription method based on velocity loss thresholds. PeerJ [Internet]. 2022;10: e13195. https://doi.org/10.7717/peerj.13195.

Article  PubMed  Google Scholar 

Steele J, Fisher J, Giessing J, Gentil P. Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle Nerve [Internet]. 2017;56:368–74. https://doi.org/10.1002/mus.25557.

Article  PubMed  Google Scholar 

Fisher JP, Steele J, Smith D. Intensity of effort and momentary failure in resistance training: are we asking a binary question for a continuous variable? J Sport Health Sci [Internet]. 2022;11:644–7. https://doi.org/10.1016/j.jshs.2022.03.002.

Article  PubMed  Google Scholar 

Jukic I, Castilla AP, Ramos AG, Hooren BV, McGuigan MR, Helms ER. The acute and chronic effects of implementing velocity loss thresholds during resistance training: a systematic review, meta-analysis, and critical evaluation of the literature. Sports Med [Internet]. 2022;53:177–214. https://doi.org/10.1007/s40279-022-01754-4.

Article  PubMed  Google Scholar 

Hernàndez-Belmonte A, Pallarès JG. Effects of velocity loss threshold during resistance training on strength and athletic adaptations: a systematic review with meta-analysis. Appl Sci [Internet]. 2022;12:4425. https://doi.org/10.3390/app12094425.

Article  CAS  Google Scholar 

Gantois P, Nakamura FY, Alcazar J, Sousa Fortes L de, Pareja-Blanco F, Souza Fonseca F de. The effects of different intra-set velocity loss thresholds on lower-limb adaptations to resistance training in young adults: a systematic review and meta-analysis. 2021. https://doi.org/10.31236/osf.io/v3tr9.

Refalo MC, Helms ER, Trexler Eric T, Hamilton DL, Fyfe JJ. Influence of resistance training proximity-to-failure on skeletal muscle hypertrophy: a systematic review with meta-analysis. Sports Med [Internet]. 2022. https://doi.org/10.1007/s40279-022-01784-y.

Article  PubMed  Google Scholar 

Zhang X, Feng S, Li H. The effect of velocity loss on strength development and related training efficiency: a doseresponse metaanalysis. Healthcare [Internet]. 2023;11:337. https://doi.org/10.3390/healthcare11030337.

Article  PubMed  Google Scholar 

Jukic I, Prnjak K, King A, McGuigan MR, Helms ER. Velocity loss is a flawed method for monitoring and prescribing resistance training volume with a free-weight back squat exercise. Eur J Appl Physiol [Internet]. 2023. https://doi.org/10.1007/s00421-023-05155-x.

Article  PubMed  Google Scholar 

Jukic I, Prnjak K, McGuigan MR, Helms ER. One velocity loss threshold does not fit all: Consideration of sex, training status, history, and personality traits when monitoring and controlling fatigue during resistance training. Sports Med Open [Internet]. 2023. https://doi.org/10.1186/s40798-023-00626-z.

Article  PubMed  PubMed Central  Google Scholar 

Klemp A, Dolan C, Quiles JM, Blanco R, Zoeller RF, Graves BS, et al. Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Appl Physiol Nutr Metab [Internet]. 2016;41:699–705. https://doi.org/10.1139/apnm-2015-0707.

Article  PubMed  Google Scholar 

Lasevicius T, Schoenfeld BJ, Silva-Batista C, de Souza Barros T, Aihara AY, Brendon H, et al. Muscle failure promotes greater muscle hypertrophy in low-load but not in high-load resistance training. J Sport Sci [Internet]. 2019;36:346–51. https://doi.org/10.1519/jsc.0000000000003454.

Article  Google Scholar 

Martorelli S, Cadore EL, Izquierdo M, Celes R, Martorelli A, Cleto VA, et al. Strength training with repetitions to failure does not provide additional strength and muscle hypertrophy gains in young women. Eur J Transl Myol [Internet]. 2017. https://doi.org/10.4081/ejtm.2017.6339.

Article  PubMed  PubMed Central  Google Scholar 

da Silva LXN, Teodoro JL, Menger E, Lopez P, Grazioli R, Farinha J, et al. Repetitions to failure versus not to failure during concurrent training in healthy elderly men: a randomized clinical trial. Exp Gerontol [Internet]. 2018;108:18–27. https://doi.org/10.1016/j.exger.2018.03.017.

Article  PubMed  Google Scholar 

Pareja-Blanco F, Rodrìguez-Rosell D, Sànchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports [Internet]. 2016;27:724–35. https://doi.org/10.1111/sms.12678.

Article  PubMed  Google Scholar 

Andersen V, Paulsen G, Stien N, Baarholm M, Seynnes O, Saeterbakken AH. Resistance training with different velocity loss thresholds induce similar changes in strength and hypertrophy. J Sport Sci [Internet]. 2021. https://doi.org/10.1519/jsc.0000000000004067.

Article  Google Scholar 

Myrholt RB, Solberg P, Pettersen H, Seynnes O, Paulsen G. Effects of low- versus high-velocity-loss thresholds with similar training volume on maximal strength and hypertrophy in highly trained individuals. Int J Sports Physiol Perform [Internet]. 2023;18:368–77. https://doi.org/10.1123/ijspp.2022-0161.

Article  PubMed  Google Scholar 

Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc [Internet]. 2005;37:955–63. https://journals.lww.com/acsm-msse/Fulltext/2005/06000/The_Impact_of_Metabolic_Stress_on_Hormonal.9.aspx. Accessed July 2022

Santanielo N, Nòbrega S, Scarpelli M, Alvarez I, Otoboni G, Pintanel L, et al. Effect of resistance training to muscle failure vs non-failure on strength, hypertrophy and muscle architecture in trained individuals. Biol Sport [Internet]. 2020;37:333–41. https://doi.org/10.5114/biolsport.2020.96317.

Article  PubMed 

Comments (0)

No login
gif