Oscanoa, T.J., F. Lizaraso, and A. Carvajal, Hospital admissions due to adverse drug reactions in the elderly. A meta-analysis. Eur J Clin Pharmacol, 2017. 73(6): p. 759-770.
Article CAS PubMed Google Scholar
Davies, E.C., et al., Adverse drug reactions in hospital in-patients: a prospective analysis of 3695 patient-episodes. PLoS One, 2009. 4(2): p. e4439.
Article PubMed PubMed Central Google Scholar
Patel, P.B. and T.K. Patel, Mortality among patients due to adverse drug reactions that occur following hospitalisation: a meta-analysis. Eur J Clin Pharmacol, 2019. 75(9): p. 1293-1307.
Palleria, C., et al., Limitations and obstacles of the spontaneous adverse drugs reactions reporting: Two "challenging" case reports. J Pharmacol Pharmacother, 2013. 4(Suppl 1): p. S66-72.
Article PubMed PubMed Central Google Scholar
Garcia-Abeijon, P., et al., Factors Associated with Underreporting of Adverse Drug Reactions by Health Care Professionals: A Systematic Review Update. Drug Saf, 2023. 46(7): p. 625-636.
Article PubMed PubMed Central Google Scholar
Pacurariu, A.C., et al., A description of signals during the first 18 months of the EMA pharmacovigilance risk assessment committee. Drug Saf, 2014. 37(12): p. 1059-66.
Lester, J., et al., Evaluation of FDA safety-related drug label changes in 2010. Pharmacoepidemiol Drug Saf, 2013. 22(3): p. 302-5.
Raine, J.M., Risk Management – a European Regulatory View, in Pharmacovigilance, F. Hon. Member ISoP Ronald D. Mann MD, FRCGP, FFPM, FISPE, Elizabeth B. Andrews MPH, PhD, Editor. 2007. p. 553 - 558.
van Hunsel, F., et al., Signals from the Dutch national spontaneous reporting system: Characteristics and regulatory actions. Pharmacoepidemiol Drug Saf, 2021. 30(8): p. 1115-1122.
Sloane, R., et al., Social media and pharmacovigilance: A review of the opportunities and challenges. Br J Clin Pharmacol, 2015. 80(4): p. 910-20.
Article PubMed PubMed Central Google Scholar
Topaz, M., et al., Clinicians' Reports in Electronic Health Records Versus Patients' Concerns in Social Media: A Pilot Study of Adverse Drug Reactions of Aspirin and Atorvastatin. Drug Saf, 2016. 39(3): p. 241-50.
Article CAS PubMed Google Scholar
McGettigan, P., et al., Patient Registries: An Underused Resource for Medicines Evaluation : Operational proposals for increasing the use of patient registries in regulatory assessments. Drug Saf, 2019. 42(11): p. 1343-1351.
Article PubMed PubMed Central Google Scholar
Trifiro, G., J. Sultana, and A. Bate, From Big Data to Smart Data for Pharmacovigilance: The Role of Healthcare Databases and Other Emerging Sources. Drug Saf, 2018. 41(2): p. 143-149.
Basile, A.O., A. Yahi, and N.P. Tatonetti, Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol Sci, 2019. 40(9): p. 624-635.
Article CAS PubMed PubMed Central Google Scholar
Chazard, E., et al., Detection of adverse drug events detection: data aggregation and data mining. Stud Health Technol Inform, 2009. 148: p. 75-84.
Bates, D.W., et al., Detecting adverse events using information technology. J Am Med Inform Assoc, 2003. 10(2): p. 115-28.
Article PubMed PubMed Central Google Scholar
Chapman, A.B., et al., Detecting Adverse Drug Events with Rapidly Trained Classification Models. Drug Saf, 2019. 42(1): p. 147-156.
Article PubMed PubMed Central Google Scholar
Li, F., W. Liu, and H. Yu, Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning. JMIR Med Inform, 2018. 6(4): p. e12159.
Article PubMed PubMed Central Google Scholar
Wunnava, S., et al., Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding. Drug Saf, 2019. 42(1): p. 113-122.
Klopotowska, J.E., et al., Adverse drug events in older hospitalized patients: results and reliability of a comprehensive and structured identification strategy. PLoS One, 2013. 8(8): p. e71045.
Article CAS PubMed PubMed Central Google Scholar
Zhao, J., et al., Predictive modeling of structured electronic health records for adverse drug event detection. BMC Med Inform Decis Mak, 2015. 15 Suppl 4(Suppl 4): p. S1.
Wolfe, D., et al., Incidence, causes, and consequences of preventable adverse drug reactions occurring in inpatients: A systematic review of systematic reviews. PLoS One, 2018. 13(10): p. e0205426.
Article PubMed PubMed Central Google Scholar
Luo, Y., et al., Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf, 2017. 40(11): p. 1075-1089.
Gonzalez-Hernandez, G., et al., Capturing the Patient's Perspective: a Review of Advances in Natural Language Processing of Health-Related Text. Yearb Med Inform, 2017. 26(1): p. 214-227.
Article CAS PubMed PubMed Central Google Scholar
van Laar, S.A., et al., An Electronic Health Record Text Mining Tool to Collect Real-World Drug Treatment Outcomes: A Validation Study in Patients With Metastatic Renal Cell Carcinoma. Clin Pharmacol Ther, 2020. 108(3): p. 644-652.
Article PubMed PubMed Central Google Scholar
Abedian Kalkhoran, H., et al., A text-mining approach to study the real-world effectiveness and potentially fatal immune-related adverse events of PD-1 and PD-L1 inhibitors in older patients with stage III/IV non-small cell lung cancer. BMC Cancer, 2023. 23(1): p. 247.
Article CAS PubMed PubMed Central Google Scholar
van Laar, S.A., et al., Application of Electronic Health Record Text Mining: Real-World Tolerability, Safety, and Efficacy of Adjuvant Melanoma Treatments. Cancers (Basel), 2022. 14(21).
Ventola, C.L., Big Data and Pharmacovigilance: Data Mining for Adverse Drug Events and Interactions. P T, 2018. 43(6): p. 340-351.
PubMed PubMed Central Google Scholar
Chen, S., et al., Natural Language Processing to Automatically Extract the Presence and Severity of Esophagitis in Notes of Patients Undergoing Radiotherapy. JCO Clin Cancer Inform, 2023. 7: p. e2300048.
Chazard, E., et al., The ADE scorecards: a tool for adverse drug event detection in electronic health records. Stud Health Technol Inform, 2011. 166: p. 169-79.
Pacurariu, A.C., et al., Useful Interplay Between Spontaneous ADR Reports and Electronic Healthcare Records in Signal Detection. Drug Saf, 2015. 38(12): p. 1201-10.
Article PubMed PubMed Central Google Scholar
Patadia, V.K., et al., Evaluating performance of electronic healthcare records and spontaneous reporting data in drug safety signal detection. Int J Clin Pharm, 2015. 37(1): p. 94-104.
Article CAS PubMed Google Scholar
Coloma, P.M., et al., A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf, 2013. 36(1): p. 13-23.
Article CAS PubMed Google Scholar
Bate, A., et al., Hypothesis-free signal detection in healthcare databases: finding its value for pharmacovigilance. Ther Adv Drug Saf, 2019. 10: p. 2042098619864744.
Article PubMed PubMed Central Google Scholar
Leegwater, E., et al., Hypokalaemia in patients treated with intravenous flucloxacillin: Incidence and risk factors. Br J Clin Pharmacol, 2022. 88(6): p. 2938-2945.
Comments (0)