Syed L, Jabeen S, Manimala S, Elsayed HA. Data science algorithms and techniques for smart healthcare using iot and big data analytics. Stud Fuzziness Soft Comput. 2019;374:211–41. https://doi.org/10.1007/978-3-030-03131-2_11/COVER.
Cao L. Data Science. ACM Computing Surveys (CSUR). 2017. https://doi.org/10.1145/3076253.
Grossi V, Giannotti F, Pedreschi D, Manghi P, Pagano P, Assante M. Data science: a game changer for science and innovation. Int J Data Sci Anal. 2021;11(4):263–78. https://doi.org/10.1007/S41060-020-00240-2/FIGURES/6.
Wing JM. Ten Research Challenge Areas in Data Science. Harv Data Sci Rev. 2020. https://doi.org/10.1162/99608f92.c6577b1f.
Subrahmanya SVG, et al. The role of data science in healthcare advancements: applications, benefits, and future prospects. Ir J Med Sci. 2022;191(4):1473–83. https://doi.org/10.1007/S11845-021-02730-Z/FIGURES/5.
Parida PK, Dora L, Swain M, Agrawal S, Panda R. Data science methodologies in smart healthcare: a review. Heal Technol. 2022;12(2):329–44. https://doi.org/10.1007/S12553-022-00648-9.
Liang Y, Kelemen A. Big Data Science and Its Applications in Health and Medical Research: Challenges and Opportunities. J Biom Biostat. 2016. https://doi.org/10.4172/2155-6180.1000307.
Kim SH, Kim NU, Chung TM. Attribute Relationship Evaluation Methodology for Big Data Security. In 2013 International Conference on IT Convergence and Security (ICITCS). IEEE. 2013. p. 1–4. https://doi.org/10.1109/ICITCS.2013.6717808.
Abedjan Z, et al. Data science in healthcare: Benefits, challenges and opportunities. Springer International Publishing; 2019. p. 3–38. https://doi.org/10.1007/978-3-030-05249-2_1/COVER.
Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. Supervised and unsupervised learning for data science. 2020. p. 3–21. https://doi.org/10.1007/978-3-030-22475-2_1.
Abouelmehdi K, Beni-Hessane A, Khaloufi H. Big healthcare data: preserving security and privacy. J Big Data. 2018;5(1):1–18. https://doi.org/10.1186/S40537-017-0110-7/TABLES/5.
Egger R, Neuburger L, Mattuzzi M. Data science and ethical issues: between knowledge gain and ethical responsibility. In: Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications. Cham: Springer International Publishing; 2022. p. 51–66. https://doi.org/10.1007/978-3-030-88389-8_4.
Saltz JS, Dewar N. Data science ethical considerations: a systematic literature review and proposed project framework. Ethics Inf Technol. 2019;21(3):197–208. https://doi.org/10.1007/S10676-019-09502-5/TABLES/5.
Khaloufi H, Abouelmehdi K, Beni-Hssane A, Saadi M. Security model for Big Healthcare Data Lifecycle. Procedia Comput Sci. 2018;141:294–301. https://doi.org/10.1016/J.PROCS.2018.10.199.
Mehrtak M, et al. Security challenges and solutions using healthcare cloud computing. J Med Life. 2021;14(4):448. https://doi.org/10.25122/JML-2021-0100.
Ottenbacher KJ, Graham JE, Fisher SR. Data Science in Physical Medicine and Rehabilitation: Opportunities and Challenges. Phys Med Rehabil Clin. 2019;30(2):459–71. https://doi.org/10.1016/j.pmr.2018.12.003.
Shortreed SM, Cook AJ, Coley RY, Bobb JF, Nelson JC. Challenges and Opportunities for Using Big Health Care Data to Advance Medical Science and Public Health. Am J Epidemiol. 2019;188(5):851–61. https://doi.org/10.1093/AJE/KWY292.
Rudrapatna VA, Butte AJ. Opportunities and challenges in using real-world data for health care. J Clin Investig. 2020;130(2):565–74. https://doi.org/10.1172/JCI129197.
Waring J, Lindvall C, Umeton R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif Intell Med. 2020;104: 101822. https://doi.org/10.1016/J.ARTMED.2020.101822.
Sanchez-Pinto LN, Luo Y, Churpek MM. Big Data and Data Science in Critical Care. Chest. 2018;154(5):1239–48. https://doi.org/10.1016/J.CHEST.2018.04.037.
Koleck TA, Dreisbach C, Bourne PE, Bakken S. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc. 2019;26(4):364–79. https://doi.org/10.1093/JAMIA/OCY173.
Arowosegbe A, Oyelade T. Application of Natural Language Processing (NLP) in Detecting and Preventing Suicide Ideation: A Systematic Review. Int J Environ Res Public Health. 2023;20(2):1514. https://doi.org/10.3390/IJERPH20021514.
Diab KM, Deng J, Wu Y, Yesha Y, Collado-Mesa F, Nguyen P. Natural Language Processing for Breast Imaging: A Systematic Review. Diagnostics. 2023;13(8):1420. https://doi.org/10.3390/DIAGNOSTICS13081420.
Khurana D, Koli A, Khatter K, Singh S. Natural language processing: state of the art, current trends and challenges. Multimed Tools Appl. 2023;82(3):3713–44. https://doi.org/10.1007/S11042-022-13428-4/FIGURES/3.
Leung CK. Data Science for Big Data Applications and Services: Data Lake Management, Data Analytics and Visualization. In: Big Data Analyses, Services, and Smart Data 6, vol. 899. Singapore: Springer; 2021. p. 28–44. https://doi.org/10.1007/978-981-15-8731-3_3/COVER.
Paul O, Rajput NS, Dehury C. Computer Vision in COVID-19: A Study. Impact of AI and Data Science in Response to Coronavirus Pandemic. 2021. p. 285–304. https://doi.org/10.1007/978-981-16-2786-6_14.
Kumar S, Singh M. Big data analytics for healthcare industry: Impact, applications, and tools. Big Data Min Anal. 2019;2(1):48–57. https://doi.org/10.26599/BDMA.2018.9020031.
Batko K, Ślęzak A. The use of Big Data Analytics in healthcare. J Big Data. 2022;9(1):1–24. https://doi.org/10.1186/S40537-021-00553-4/TABLES/11.
Kumar M, et al. Healthcare Internet of Things (H-IoT): Current Trends, Future Prospects, Applications, Challenges, and Security Issues. Electronics. 2023;12(9):20500. https://doi.org/10.3390/ELECTRONICS12092050.
Rehman A, Naz S, Razzak I. Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimed Syst. 2021;28(4):1339–71. https://doi.org/10.1007/S00530-020-00736-8.
Dalianis H, Henriksson A, Kvist M, Velupillai S, Weegar R. HEALTH BANK-A Workbench for Data Science Applications in Healthcare. CAiSE Industry Track. 2015;1381:1–18. Available: https://www.i2b2.org/NLP/HeartDisease/PreviousChallenges.php.
Jayaratne M, et al. A data integration platform for patient-centered e-healthcare and clinical decision support. Futur Gener Comput Syst. 2019;92:996–1008. https://doi.org/10.1016/J.FUTURE.2018.07.061.
Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MAA, Dwivedi YK. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. J Innov Knowl. 2023;8(1): 100333. https://doi.org/10.1016/J.JIK.2023.100333.
Joshi I, et al. Artificial intelligence, big data and machine learning approaches in genome-wide SNP-based prediction for precision medicine and drug discovery. Big Data Analytics in Chemoinformatics and Bioinformatics. 2023. p. 333–357. https://doi.org/10.1016/B978-0-323-85713-0.00021-9.
Asri H, Mousannif H, Al Moatassime H, Noel T. Big data in healthcare: Challenges and opportunities. In 2015 International Conference on Cloud Technologies and Applications (CloudTech), IEEE. 2015;1:1–7. https://doi.org/10.1109/CloudTech.2015.7337020.
Muniasamy A, Tabassam S, Hussain MA, Sultana H, Muniasamy V, Bhatnagar R. Deep Learning for Predictive Analytics in Healthcare. In: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) 4. Springer International Publishing; 2020. p. 32–42. https://doi.org/10.1007/978-3-030-14118-9_4.
Malasinghe LP, Ramzan N, Dahal K. Remote patient monitoring: a comprehensive study. J Ambient Intell Humaniz Comput. 2019;10(1):57–76. https://doi.org/10.1007/S12652-017-0598-X/TABLES/6.
Razzak MI, Imran M, Xu G. Big data analytics for preventive medicine. Neural Comput Appl. 2020;32(9):4417–51. https://doi.org/10.1007/S00521-019-04095-Y/FIGURES/5.
Krishna CV, Rohit HR, Mohana. A review of artificial intelligence methods for data science and data analytics: Applications and research challenges. Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018. 2019. p. 591–594. https://doi.org/10.1109/I-SMAC.2018.8653670.
Gruson D, Helleputte T, Rousseau P, Gruson D. Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation. Clin Biochem. 2019;69:1–7. https://doi.org/10.1016/J.CLINBIOCHEM.2019.04.013.
McCoy LG, Banja JD, Ghassemi M, Celi LA. Ensuring machine learning for healthcare works for all. BMJ Health Care Inform. 2020;27(3):100237. https://doi.org/10.1136/BMJHCI-2020-100237
Bloice MD, Holzinger A. A Tutorial on Machine Learning and Data Science Tools with Python. Machine Learning for Health Informatics: State-of-the-Art and Future Challenges. 2016. p. 435–480. https://doi.org/10.1007/978-3-319-50478-0_22.
Alanazi A. Using machine learning for healthcare challenges and opportunities. Inform Med Unlocked. 2022;30:100924. https://doi.org/10.1016/J.IMU.2022.100924.
Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019;64:277–82. https://doi.org/10.1016/J.JOCN.2019.03.001.
Comments (0)