Rethinking Parkinson's disease: could dopamine reduction therapy have clinical utility?

Ehringer H, Hornykiewicz O (1960) Distribution of norepinephrine and dopamine (3-hydroxytyramine) in the brain of humans and their behavior in diseases of the extrapyramidal system. Kinische Wochenschrift 38:1236–1239. https://doi.org/10.1007/BF01485901

Article  CAS  Google Scholar 

Birkmayer W, Hornykiewicz O (1962) The L-dihydroxyphenylalanine (L-DOPA) effect in Parkinson’s syndrome in man: on the pathogenesis and treatment of Parkinson akinesis. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 203:560–574. https://doi.org/10.1007/BF00343235

Article  CAS  PubMed  Google Scholar 

Bernheimer H, Birkmayer W, Hornykiewicz O (1963) The biochemistry of Parkinson-syndrome of men. Influence of monoamine oxidase-inhibitor therapy on the concentration of dopamine, noradrenaline and 5-hydroxytryptamin in the brain. Klin Wochenschr 41:465–469

Article  CAS  Google Scholar 

Bernheimer H, Hornykiewicz O (1965) Decreased concentration of homovanillic acid in the brain of people with Parkinson’s disease as an expression of the disruption of the central dopamine metabolism. Klin Wochenschr 43:711–715. https://doi.org/10.1007/BF01707066

Article  CAS  PubMed  Google Scholar 

Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348. https://doi.org/10.1038/334345a0

Article  CAS  PubMed  Google Scholar 

Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson’s disease: dopamine and levodopa in the treatment of PD. Mov Disord 23:S497–S508. https://doi.org/10.1002/mds.22028

Article  PubMed  Google Scholar 

Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

Article  CAS  PubMed  Google Scholar 

Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30:244–250. https://doi.org/10.1016/j.tins.2007.03.009

Article  CAS  PubMed  Google Scholar 

Goldstein DS, Sullivan P, Holmes C et al (2013) Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126:591–603. https://doi.org/10.1111/jnc.12345

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

Article  PubMed  Google Scholar 

Weiner WJ, Koller WC, Perlik S et al (1980) Drug holiday and management of Parkinson disease. Neurology 30:1257–1257. https://doi.org/10.1212/WNL.30.12.1257

Article  CAS  PubMed  Google Scholar 

Kurlan R, Tanner CM, Goetz C et al (1994) Levodopa drug holiday versus drug dosage reduction in Parkinson’s disease. Clin Neuropharmacol 17:117–127. https://doi.org/10.1097/00002826-199404000-00002

Article  Google Scholar 

Koziorowski D, Friedman A (2007) Levodopa “drug holiday” with amantadine infusions as a treatment of complications in Parkinson’s disease. Mov Disord 22:1033–1036. https://doi.org/10.1002/mds.21448

Article  PubMed  Google Scholar 

The Parkinson Study Group (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351:2498–2508. https://doi.org/10.1056/NEJMoa033447

Article  Google Scholar 

Pahwa R, Lyons KE, Hauser RA et al (2014) Randomized trial of IPX066, carbidopa/levodopa extended release, in early Parkinson’s disease. Parkinsonism Relat Disord 20:142–148. https://doi.org/10.1016/j.parkreldis.2013.08.017

Article  PubMed  Google Scholar 

Verschuur CVM, Suwijn SR, Boel JA et al (2019) Randomized delayed-start trial of levodopa in Parkinson’s disease. N Engl J Med 380:315–324. https://doi.org/10.1056/NEJMoa1809983

Article  CAS  PubMed  Google Scholar 

Sackner-Bernstein J (2021) Estimates of intracellular dopamine in Parkinson’s disease: a systematic review and meta-analysis. JPD 11:1011–1018. https://doi.org/10.3233/JPD-212715

Article  PubMed  Google Scholar 

Mogi M, Harada M, Kiuchi K et al (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brain. J Neural Trans 72:77–82. https://doi.org/10.1007/BF01244634

Article  CAS  Google Scholar 

Zigmond MJ, Abercrombie ED, Berger TW et al (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 13:290–296. https://doi.org/10.1016/0166-2236(90)90112-N

Article  CAS  PubMed  Google Scholar 

Zhou ZD, Saw WT, Ho PGH et al (2022) The role of tyrosine hydroxylase-dopamine pathway in Parkinson’s disease pathogenesis. Cell Mol Life Sci 79:599. https://doi.org/10.1007/s00018-022-04574-x

Article  CAS  PubMed  Google Scholar 

Axt KJ, Commins DL, Vosmer G, Seiden LS (1990) α-methyl-p-tyrosine pretreatment partially prevents methamphetamine-induced endogenous neurotoxin formation. Brain Res 515:269–276

Article  CAS  PubMed  Google Scholar 

Choi SJ, Panhelainen A, Schmitz Y et al (2015) Changes in neuronal dopamine homeostasis following 1-methyl-4-phenylpyridinium (MPP+) exposure. J Biol Chem 290:6799–6809. https://doi.org/10.1074/jbc.M114.631556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong Z, Ferger B, Paterna J-C et al (2003) Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc Natl Acad Sci USA 100:12438–12443. https://doi.org/10.1073/pnas.2132992100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Kao S-Y, Lee FJS et al (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606. https://doi.org/10.1038/nm0602-600

Article  CAS  PubMed  Google Scholar 

Xilouri M, Vogiatzi T, Vekrellis K et al (2009) Aberrant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4:e5515. https://doi.org/10.1371/journal.pone.0005515

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burbulla LF, Song P, Mazzulli JR et al (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357:1255–1261. https://doi.org/10.1126/science.aam9080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitazawa M, Wagner JR, Kirby ML et al (2002) Oxidative stress and mitochondrial-mediated apoptosis in dopaminergic cells exposed to methylcyclopentadienyl manganese tricarbonyl. J Pharmacol Exp Ther 302:26–35. https://doi.org/10.1124/jpet.302.1.26

Article  CAS  PubMed  Google Scholar 

US FDA (2021) Demser Product Label. https://dailymed.nlm.nih.gov/dailymed/getFile.cfm?setid=32fb2f2f-34b5-4cd5-9145-c3ab37c5ca92&type=pdf. Accessed 9 May 2024

Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490

CAS  PubMed  Google Scholar 

Hornykiewicz O (1963) Localization and behavior of noradrenalin and dopamine (3-hydroxytyramin) in the substantia nigra of normal and Parkinson’s patients. Wien Klin Wochenschr 75:309–312

CAS  PubMed  Google Scholar 

Fahn S (2017) Parkinsonism and related disorders the 200-year journey of Parkinson disease: reflecting on the past and looking towards the future. Parkinsonism Relat Disord 46:1–5. https://doi.org/10.1016/j.parkreldis.2017.07.020

Comments (0)

No login
gif