Penzias A, Bendikson K, Falcone T, Hansen K, Hill M, Jindal S, et al. Evidence-based treatments for couples with unexplained infertility: a guideline. Fertil Steril. 2020;113:305–22.
Nandi A, Raja G, White D, Tarek ET. Intrauterine insemination + controlled ovarian hyperstimulation versus in vitro fertilisation in unexplained infertility: a systematic review and meta-analysis. Arch Gynecol Obstet. 2022;305:805–24.
Bai F, Wang DY, Fan YJ, Qiu J, Wang L, Dai Y, et al. Assisted reproductive technology service availability, efficacy and safety in mainland China: 2016. Hum Reprod. 2020;35:446–52.
Article CAS PubMed Google Scholar
Kozar N, Kovač V, Reljič M. Can methods of artificial intelligence aid in optimizing patient selection in patients undergoing intrauterine inseminations? J Assist Reprod Genet. 2021;38:1665–73.
Article PubMed PubMed Central Google Scholar
Garcia-Grau E, Oliveira M, Amengual MJ, Rodriguez-Sanchez E, Veraguas-Imbernon A, Costa L, et al. An algorithm to predict the lack of pregnancy after intrauterine insemination in infertile patients. J Clin Med. 2023;12:3225.
Article CAS PubMed PubMed Central Google Scholar
Zarinara A, Zeraati H, Kamali K, Mohammad K, Shahnazari P, Akhondi MM. Models predicting success of infertility treatment: a systematic review. J Reprod Infertil. 2016;17:68–81.
PubMed PubMed Central Google Scholar
Leushuis E, van der Steeg JW, Steures P, Bossuyt PMM, Eijkemans MJC, van der Veen F, et al. Prediction models in reproductive medicine: a critical appraisal. Hum Reprod Update. 2009;15:537–52.
Khodabandelu S, Basirat Z, Khaleghi S, Khafri S, Montazery Kordy H, Golsorkhtabaramiri M. Developing machine learning-based models to predict intrauterine insemination (IUI) success by address modeling challenges in imbalanced data and providing modification solutions for them. BMC Med Inform Decis Mak. 2022;22:228.
Article PubMed PubMed Central Google Scholar
Steures P, van der Steeg JW, Mol BW, Eijkemans MJ, van der Veen F, Habbema JD, et al. Prediction of an ongoing pregnancy after intrauterine insemination. Fertil Steril. 2004;82:45–51.
Custers IM, Steures P, van der Steeg JW, van Dessel TJHM, Bernardus RE, Bourdrez P, et al. External validation of a prediction model for an ongoing pregnancy after intrauterine insemination. Fertil Steril. 2007;88:425–31.
Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19:64.
Article PubMed PubMed Central Google Scholar
Blank C, Wildeboer RR, DeCroo I, Tilleman K, Weyers B, de Sutter P, et al. Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective. Fertil Steril. 2019;111:318–26.
Nesbit CB, Blanchette-Porter M, Esfandiari N. Ovulation induction and intrauterine insemination in women of advanced reproductive age: a systematic review of the literature. J Assist Reprod Genet. 2022;39:1445–91.
Article PubMed PubMed Central Google Scholar
Kuru PM, Kokanali D, Kokanali K, Tasci Y. Effect of time intervals from the end of sperm collection to intrauterine insemination on the pregnancy rates in controlled ovarian hyperstimulation-intrauterine insemination cycles. J Gynecol Obstet Hum Reprod. 2018;47:561–4.
Vander BM, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.
Mehrjerd A, Rezaei H, Eslami S, Ratna MB, Khadem GN. Internal validation and comparison of predictive models to determine success rate of infertility treatments: a retrospective study of 2485 cycles. Sci Rep. 2022;12:7216.
Article CAS PubMed PubMed Central Google Scholar
Ranjbari S, Khatibi T, Vosough Dizaji A, Sajadi H, Totonchi M, Ghaffari F. CNFE-SE: a novel approach combining complex network-based feature engineering and stacked ensemble to predict the success of intrauterine insemination and ranking the features. BMC Med Inform Decis Mak. 2021;21:1.
Article PubMed PubMed Central Google Scholar
Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature. Fertil Steril. 2010;93:79–88.
Sakhel K, Abozaid T, Schwark S, Ashraf M, Abuzeid M. Semen parameters as determinants of success in 1662 cycles of intrauterine insemination after controlled ovarian hyperstimulation. Fertil Steril. 2005;84:S248–9.
Kulaksiz D, Toprak T, Tokat E, Yilmaz M, Ramazanoglu MA, Garayev A, et al. Sperm concentration and semen volume increase after smoking cessation in infertile men. Int J Impot Res. 2022;34:614–9.
Article PubMed PubMed Central Google Scholar
Wessel JA, Danhof NA, van Eekelen R, Diamond MP, Legro RS, Peeraer K, et al. Ovarian stimulation strategies for intrauterine insemination in couples with unexplained infertility: a systematic review and individual participant data meta-analysis. Hum Reprod Update. 2022;28:733–46.
Article CAS PubMed PubMed Central Google Scholar
Xue X, Shi W, Zhou H, Tian L, Zhao Z, Zhou D, et al. Cumulative live birth rates according to maternal body mass index after first ovarian stimulation for in vitro fertilization: a single center analysis of 14,782 Patients. Front Endocrinol (Lausanne). 2020;11:149.
Qu P, Yan M, Zhao D, Wang D, Dang S, Shi W, et al. Association between pre-pregnancy body mass index and miscarriage in an assisted reproductive technology population: a 10-year cohort study. Front Endocrinol (Lausanne). 2021;12:646162.
Yavuz A, Demirci O, Sozen H, Uludogan M. Predictive factors influencing pregnancy rates after intrauterine insemination. Iran J Reprod Med. 2013;11:227–34.
CAS PubMed PubMed Central Google Scholar
Gindoff PR, Jewelewicz R. Reproductive potential in the older woman. Fertil Steril. 1986;46:989–1001.
Article CAS PubMed Google Scholar
Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.
Article CAS PubMed Google Scholar
Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2021;70:2–9.
Thijssen A, Creemers A, Van der Elst W, Creemers E, Vandormael E, Dhont N, et al. Predictive value of different covariates influencing pregnancy rate following intrauterine insemination with homologous semen: a prospective cohort study. Reprod Biomed Online. 2017;34:463–72.
Soria M, Pradillo G, García J, Ramón P, Castillo A, Jordana C, et al. Pregnancy predictors after intrauterine insemination: analysis of 3012 cycles in 1201 couples. J Reprod Infertil. 2012;13:158–66.
PubMed PubMed Central Google Scholar
Jain A, Polotsky AJ, Rochester D, Berga SL, Loucks T, Zeitlian G, et al. Pulsatile luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women. J Clin Endocrinol Metab. 2007;92:2468–73.
Article CAS PubMed Google Scholar
Regan L, Owen EJ, Jacobs HS. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet. 1990;336:1141–4.
Article CAS PubMed Google Scholar
Iliodromiti S, Kelsey TW, Wu O, Anderson RA, Nelson SM. The predictive accuracy of anti-Müllerian hormone for live birth after assisted conception: a systematic review and meta-analysis of the literature. Hum Reprod Update. 2014;20:560–70.
Article CAS PubMed Google Scholar
Hansen KR, He ALW, Styer AK, Wild RA, Butts S, Engmann L, et al. Predictors of pregnancy and live-birth in couples with unexplained infertility after ovarian stimulation-intrauterine insemination. Fertil Steril. 2016;105:1575-1583.e2.
Comments (0)