Cheng L, Albers P, Berney DM, Feldman DR, Daugaard G, Gilligan T, Looijenga LHJ (2018) Testicular cancer. Nat Rev Dis Primers 4(1):29. https://doi.org/10.1038/s41572-018-0029-0. (PMID: 30291251)
Batool A, Karimi N, Wu XN, Chen SR, Liu YX (2019) Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 76(9):1713–1727. https://doi.org/10.1007/s00018-019-03022-7. (Epub 2019 Jan 22 PMID: 30671589)
Article CAS PubMed Google Scholar
di Pietro A, Vries EG, Gietema JA, Spierings DC, de Jong S (2005) Testicular germ cell tumours: the paradigm of chemo-sensitive solid tumours. Int J Biochem Cell Biol 37(12):2437–2456. https://doi.org/10.1016/j.biocel.2005.06.014. (Epub 2005 Aug 11 PMID: 16099193)
Article CAS PubMed Google Scholar
Looijenga LH, Gillis AJ, Stoop H, Biermann K, Oosterhuis JW (2011) Dissecting the molecular pathways of (testicular) germ cell tumour pathogenesis; from initiation to treatment-resistance. Int J Androl 34(4 Pt 2):e234–e251. https://doi.org/10.1111/j.1365-2605.2011.01157.x. (Epub 2011 May 12 PMID: 21564133)
Article CAS PubMed Google Scholar
Surveillance, Epidemiology and End Results Program. SEER Stat Fact Sheets: Testis Cancer. National Cancer Institute. Available at: https://seer.cancer.gov/statfacts/html/testis.html. Accessed: Sep 11, 2023)
Voutsadakis IA (2014) The chemosensitivity of testicular germ cell tumors. Cell Oncol (Dordr) 37(2):79–94. https://doi.org/10.1007/s13402-014-0168-6. (Epub 2014 Apr 2 PMID: 24692098)
Article CAS PubMed Google Scholar
Országhová Z, Kalavska K, Mego M, Chovanec M (2022) Overcoming Chemotherapy Resistance in Germ Cell Tumors. Biomedicines 10(5):972. https://doi.org/10.3390/biomedicines10050972
Article CAS PubMed PubMed Central Google Scholar
Ellison AR, Lofing J, Bitter GA (2004) Human MutL homolog (MLH1) function in DNA mismatch repair: a prospective screen for missense mutations in the ATPase domain. Nucleic Acids Res 32(18):5321–5338. https://doi.org/10.1093/nar/gkh855
Article CAS PubMed PubMed Central Google Scholar
Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261. https://doi.org/10.1038/368258a0. (PMID: 8145827)
Article CAS PubMed Google Scholar
Friedberg EC, McDaniel LD, Schultz RA (2004) The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev 14(1):5–10. https://doi.org/10.1016/j.gde.2003.11.001. (PMID: 15108798)
Article CAS PubMed Google Scholar
Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R (2000) A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 275(6):4391–4397. https://doi.org/10.1074/jbc.275.6.4391. (PMID: 10660610)
Article CAS PubMed Google Scholar
Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M (2001) Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 276(38):35644–35651. https://doi.org/10.1074/jbc.M102051200. (Epub 2001 Aug 2 PMID: 11485998)
Article CAS PubMed Google Scholar
Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353. https://doi.org/10.1146/annurev.biochem.74.082803.133250. (PMID: 15952890)
Article CAS PubMed Google Scholar
Lee YS, Gregory MT, Yang W (2014) Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1324001111
Article PubMed PubMed Central Google Scholar
Clairmont CS, D’Andrea AD (2021) REV7 directs DNA repair pathway choice. Trends Cell Biol 31(12):965–978. https://doi.org/10.1016/j.tcb.2021.05.009
Article CAS PubMed PubMed Central Google Scholar
de Krijger I, Boersma V, Jacobs JJL (2021) REV7: Jack of many trades. Trends Cell Biol 31(8):686–701
Article PubMed PubMed Central Google Scholar
Olasz J, Mándoky L, Géczi L, Bodrogi I, Csuka O, Bak M (2005) Influence of hMLH1 methylation, mismatch repair deficiency and microsatellite instability on chemoresistance of testicular germ-cell tumors. Anticancer Res 25(6):4319–4324
Lothe RA, Peltomäki P, Tommerup N, Fosså SD, Stenwig AE, Børresen AL, Nesland JM (1995) Molecular genetic changes in human male germ cell tumors. Lab Invest 73(5):606–614 (PMID: 7474934)
Peltomäki P, Lothe RA, Aaltonen LA, Pylkkänen L, Nyström-Lahti M, Seruca R, David L, Holm R, Ryberg D, Haugen A et al (1993) Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53(24):5853–5855 (PMID: 8261393)
Devouassoux-Shisheboran M, Mauduit C, Bouvier R, Berger F, Bouras M, Droz JP, Benahmed M (2001) Expression of hMLH1 and hMSH2 and assessment of microsatellite instability in testicular and mediastinal germ cell tumours. Mol Hum Reprod 7(12):1099–1105. https://doi.org/10.1093/molehr/7.12.1099. (PMID: 11719586)
Article CAS PubMed Google Scholar
Mayer F, Gillis AJ, Dinjens W, Oosterhuis JW, Bokemeyer C, Looijenga LH (2002) Microsatellite instability of germ cell tumors is associated with resistance to systemic treatment. Cancer Res 62(10):2758–2760 (PMID: 12019150)
Dum D, Steurer S, Simon R, Zimmermann PV, Burandt E, Clauditz TS, Fisch M, Rink M, Dahlem R, Höppner W, Zecha H, Doh O, Matthies C, Wilczak W, Sauter G, Fraune C (2021) Mismatch repair deficiency occurs very rarely in seminomas. Transl Androl Urol 10(3):1048–1055
Article PubMed PubMed Central Google Scholar
Brait M, Maldonado L, Begum S, Loyo M, Wehle D, Tavora FF, Looijenga LH, Kowalski J, Zhang Z, Rosenbaum E, Halachmi S, Netto GJ, Hoque MO (2012) DNA methylation profiles delineate epigenetic heterogeneity in seminoma and non-seminoma. Br J Cancer 106(2):414–423
Article CAS PubMed Google Scholar
Huang D, Matin SF, Lawrentschuk N, Roupret M (2018) Systematic Review: An Update on the Spectrum of Urological Malignancies in Lynch Syndrome. Bladder Cancer 4(3):261–268
Article PubMed PubMed Central Google Scholar
Niimi K, Murakumo Y, Watanabe N, Kato T, Mii S, Enomoto A, Asai M, Asai N, Yamamoto E, Kajiyama H, Shibata K, Kikkawa F, Takahashi M (2014) Suppression of REV7 enhances cisplatin sensitivity in ovarian clear cell carcinoma cells. Cancer Sci 105(5):545–552
Article CAS PubMed PubMed Central Google Scholar
Gu C, Luo J, Lu X, Tang Y, Ma Y, Yun Y, Cao J, Cao J, Huang Z, Zhou X, Zhang S (2019) REV7 confers radioresistance of esophagus squamous cell carcinoma by recruiting PRDX2. Cancer Sci 110(3):962–972
Article CAS PubMed PubMed Central Google Scholar
Kurfurstova D, Bartkova J, Vrtel R, Mickova A, Burdova A, Majera D, Mistrik M, Kral M, Santer FR, Bouchal J, Bartek J (2016) DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer. Mol Oncol 10(6):879–894
Article CAS PubMed PubMed Central Google Scholar
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W (2018) MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation. Mol Oncol 12(3):391–405
Article CAS PubMed PubMed Central Google Scholar
Okina S, Yanagisawa N, Yokoyama M, Sakurai Y, Numata Y, Umezawa A, Higashihara M, Murakumo Y (2015) High expression of REV7 is an independent prognostic indicator in patients with diffuse large B-cell lymphoma treated with rituximab. Int J Hematol 102(6):662–669. https://doi.org/10.1007/s12185-015-1880-3. (Epub 2015 Oct 8 PMID: 26449786)
Comments (0)