Zhu X, Wei Y, Yang Q et al (2023) FBXO22 promotes leukemogenesis by targeting BACH1 in MLL-rearranged acute myeloid leukemia[J]. J Hematol Oncol 16(1):9
Watts JM, Bradley T (2020) The Hi’s and Lo’s of cytarabine in acute myeloid leukemia[J]. Clin Cancer Res 26(13):3073–3076
Article CAS PubMed PubMed Central Google Scholar
Momparler RL (2013) Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia[J]. Exp Hematol Oncol 2(1):20
Article PubMed PubMed Central Google Scholar
Song Y, Park SY, Wu Z et al (2020) Hybrid inhibitors of DNA and HDACs remarkably enhance cytotoxicity in leukaemia cells[J]. J Enzyme Inhib Med Chem 35(1):1069–1079
Article CAS PubMed PubMed Central Google Scholar
Heuser M, Ofran Y, Boissel N et al (2020) Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol 31(6):697–712
Article CAS PubMed Google Scholar
Malani D, Murumägi A, Yadav B et al (2017) Enhanced sensitivity to glucocorticoids in cytarabine-resistant AML[J]. Leukemia 31(5):1187–1195
Article CAS PubMed Google Scholar
Li Z, Guo J, Chen Q et al (2017) Exploring the antitumor mechanism of high-dose cytarabine through the metabolic perturbations of ribonucleotide and deoxyribonucleotide in human promyelocytic leukemia HL-60 cells[J]. Molecules 22(3):499
Article PubMed PubMed Central Google Scholar
Pollyea DA, Bixby D, Perl A et al (2021) (2021) NCCN guidelines insights: acute myeloid leukemia, version 2.2021[J]. J Natl Compr Canc Netw 19(1):16–27
DiNardo C, Lachowiez C (2019) Acute myeloid leukemia: from mutation profiling to treatment decisions[J]. Curr Hematol Malig Rep 14(5):386–394
Rausch C, Rothenberg-Thurley M, Dufour A et al (2023) Validation and refinement of the 2022 European LeukemiaNet genetic risk stratification of acute myeloid leukemia[J]. Leukemia 37(6):1234–1244
Article CAS PubMed PubMed Central Google Scholar
Menendez-Gonzalez JB, Sinnadurai S, Gibbs A et al (2013) Inhibition of GATA2 restrains cell proliferation and enhances apoptosis and chemotherapy mediated apoptosis in human GATA2 overexpressing AML cells[J]. Sci Rep 9(1):12212
Li Y, Yuan S, Liu J et al (2020) CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF[J]. J Cell Physiol 235(3):2071–2079
Article CAS PubMed Google Scholar
Pimiento JM, Neill KG, Henderson-Jackson E et al (2016) Knockdown of CSE1L gene in colorectal cancer reduces tumorigenesis in vitro[J]. Am J Pathol 186(10):2761–2768
Article CAS PubMed PubMed Central Google Scholar
Liu W, Zhou Z, Li Y et al (2021) CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer[J]. Am J Cancer Res 11(9):4380–4393
CAS PubMed PubMed Central Google Scholar
Liu C, Wei J, Xu K et al (2019) CSE1L participates in regulating cell mitosis in human seminoma[J]. Cell Prolif 52(2):e12549
Nagashima S, Maruyama J, Honda K et al (2021) CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells[J]. J Biol Chem 297(1):100803
Article CAS PubMed PubMed Central Google Scholar
Lin H C, Li J, Cheng D et al (2021) Nuclear export protein CSE1L interacts with P65 and promotes NSCLC growth via NF-κB/MAPK pathway[J]. Molec Ther – Oncol 21(prepublish):23–36
Chang CC, Kao WY, Liu CY et al (2022) Butyrate supplementation regulates expression of chromosome segregation 1‑like protein to reverse the genetic distortion caused by p53 mutations in colorectal cancer[J]. Int J Oncol 60(6):64
Hu J, Qiu D, Yu A et al (2021) YTHDF1 Is a potential pan-cancer biomarker for prognosis and immunotherapy[J]. Front Oncol 11:607224
Lu K, Li B, Zhang H et al (2020) A novel silicone derivative of natural osalmid (DCZ0858) induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma via the JAK2/STAT3 pathway[J]. Signal Trans Target Ther 5(1):31
Behrens P, Brinkmann U, Wellmann A (2003) CSE1L/CAS: Its role in proliferation and apoptosis[J]. Apoptosis (London) 8(1):39–44
Luo Y, Qu X, Kan D et al (2021) The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma[J]. Bioengineered 12(1):6967–6980
Article CAS PubMed PubMed Central Google Scholar
Paech F, Abegg VF, Duthaler U et al (2018) Sunitinib induces hepatocyte mitochondrial damage and apoptosis in mice[J]. Toxicology 409:13–23
Article CAS PubMed Google Scholar
Dethlefsen MM, Halling JF, Moller HD et al (2018) Regulation of apoptosis and autophagy in mouse and human skeletal muscle with aging and lifelong exercise training[J]. Exp Gerontol 111:141–153
Lin K, Zhao W, Huang S et al (2021) Grape seed proanthocyanidin extract induces apoptosis of HL-60/ADR cells via the Bax/Bcl-2 caspase-3/9 signaling pathway[J]. Translational Cancer Research 10(9):3939–3947
Article CAS PubMed PubMed Central Google Scholar
Man N, Tan Y, Sun X et al (2017) Caspase-3 controls AML1-ETO–driven leukemogenesis via autophagy modulation in a ULK1-dependent manner[J]. Blood 129(20):2782–2792
Article CAS PubMed PubMed Central Google Scholar
Xue F, Zhu Y, Xu F et al (2019) MicroRNA-199 inhibits proliferation and promotes apoptosis in children with acute myeloid leukemia by mediating caspase-3.[J]. Europ Rev Med Pharmacol Sci 23(9):3584–3593
Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sánchez I et al (2021) Inhibitors of chemoresistance pathways in combination with ara-c to overcome multidrug resistance in AML. A mini review[J]. Int J Molec Sci 22(9):4955
Shang Q, Pan C, Zhang X et al (2023) Nuclear factor Nrf2 promotes glycosidase OGG1 expression by activating the AKT pathway to enhance leukemia cell resistance to cytarabine[J]. J Biol Chem 299(1):102798
Article CAS PubMed Google Scholar
Zhang F, Sun J, Tang X et al (2022) Stabilization of SAMHD1 by NONO is crucial for Ara-C resistance in AML[J]. Cell Death Dis 13(7):511–590
Lei B, Qian L, Zhang Y et al (2020) MLAA-34 knockdown shows enhanced antitumor activity via JAK2/STAT3 signaling pathway in acute monocytic leukemia[J]. J Cancer 11(23):6768–6781
Article CAS PubMed PubMed Central Google Scholar
Mesbahi Y, Zekri A, Ghaffari SH et al (2018) Blockade of JAK2/STAT3 intensifies the anti-tumor activity of arsenic trioxide in acute myeloid leukemia cells: novel synergistic mechanism via the mediation of reactive oxygen species[J]. Eur J Pharmacol 834:65–76
Comments (0)