Evaluating antimicrobial activity and cytotoxicity of silver nanoparticles incorporated into reinforced zinc oxide eugenol: an in vitro study

Alzaidy FA, Khalifa AK, Emera RM. The antimicrobial efficacy of nanosilver modified root canal sealer. Eur J Res Med Sci. 2018;6(1):1–6.

Google Scholar 

AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w.

Article  CAS  PubMed  Google Scholar 

Bahador A, Pourakbari B, Bolhari B, Hashemi FB. In vitro evaluation of the antimicrobial activity of nanosilver-mineral trioxide aggregate against frequent anaerobic oral pathogens by a membrane-enclosed immersion test. Biomed J. 2015;38(1):77–83. https://doi.org/10.4103/2319-4170.132901.

Article  PubMed  Google Scholar 

Bedier MMA. Antibacterial efficacy of mineral trioxide aggregate combined with nano-silver additives. Egypt Dental J. 2017;63(2):1833–41. https://doi.org/10.21608/EDJ.2017.75138.

Article  Google Scholar 

Bossù M, Iaculli F, Di Giorgio G, Salucci A, Polimeni A, Di Carlo S. Different pulp dressing materials for the pulpotomy of primary teeth: a systematic review of the literature. J Clin Med. 2020;9(3):838. https://doi.org/10.3390/jcm9030838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox ST Jr, Hembree JH Jr, McKnight JP. The bactericidal potential of various endodontic materials for primary teeth. Oral Surg Oral Med Oral Pathol. 1978;45(6):947–54. https://doi.org/10.1016/s0030-4220(78)80017-6.

Article  CAS  PubMed  Google Scholar 

Duque C, de Cassia Negrini T, Sacono NT, Spolidorio DMP, de Souza Costa CA, Hebling J. Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal. Clin Oral Investig. 2009;13(4):465–71. https://doi.org/10.1007/s00784-009-0304-2.

Article  PubMed  Google Scholar 

Eskandarian T, Motamedifar M, Arasteh P, Eghbali SS, Adib A, Abdoli Z. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on streptococcus mutans: an in-vitro study. Electr Phys. 2017;9(3):4042–7. https://doi.org/10.19082/4042.

Article  Google Scholar 

Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190(2):156–62. https://doi.org/10.1016/j.toxlet.2009.07.009.

Article  CAS  PubMed  Google Scholar 

Fuks A, Papagiannoulis L, Duggal M. Pulpotomy in primary teeth: review of the literature according to standardized assessment criteria. Eur Arch Paediatr Dent. 2006;7(2):64–71. https://doi.org/10.1007/BF03320817.

Article  CAS  PubMed  Google Scholar 

Gomes-Filho JE, Silva FO, Watanabe S, Cintra LT, Tendoro KV, Dalto LG, Pacanaro SV, Lodi CS, de Melo FF. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod. 2010;36(10):1698–702. https://doi.org/10.1016/j.joen.2010.07.007.

Article  PubMed  Google Scholar 

Javidi M, Zarei M, Omidi S, Ghorbani A, Gharechahi M, Rad MS. Cytotoxicity of a new nano zinc-oxide eugenol sealer on murine fibroblasts. Iran Endod J. 2015;10(4):231–5. https://doi.org/10.7508/iej.2015.04.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jha S, Goel N, Dash BP, Sarangal H, Garg I, Namdev R. An Update on newer pulpotomy agents in primary teeth: A literature review. J Pharm Bioallied Sci. 2021;13(Suppl 1):S57–61. https://doi.org/10.4103/jpbs.JPBS_799_20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jun SK, Kim HW, Lee HH, Lee JH. Zirconia-incorporated zinc oxide eugenol has improved mechanical properties and cytocompatibility with human dental pulp stem cells. Dent Mater. 2018;34(1):132–42. https://doi.org/10.1016/j.dental.2017.09.021.

Article  CAS  PubMed  Google Scholar 

Lebda MA, Sadek KM, Tohamy HG, Abouzed TK, Shukry M, Umezawa M, El-Sayed YS. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci. 2018;212:251–60. https://doi.org/10.1016/j.lfs.2018.10.011.

Article  CAS  PubMed  Google Scholar 

Li L, Li L, Zhou X, Yu Y, Li Z, Zuo D, Wu Y. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology. 2019;13(3):369–91. https://doi.org/10.1080/17435390.2018.1550226.

Article  CAS  PubMed  Google Scholar 

Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2):449. https://doi.org/10.3390/ijms20020449.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maltz M, Oliveira E, Fontanella V, Carminatti G. Deep caries lesions after incomplete dentine caries removal: 40-month follow-up study. Caries Res. 2007;41(6):493–6. https://doi.org/10.1159/000109349.

Article  CAS  PubMed  Google Scholar 

Moskovitz M, Tickotsky N, Dassa M, Fux-Noy A, Shmueli A, Halperson E, Ram D. Zinc oxide zinc sulfate versus zinc oxide eugenol as pulp chamber filling materials in primary molar pulpotomies. Children. 2021;8(9):776. https://doi.org/10.3390/children8090776.

Article  PubMed  PubMed Central  Google Scholar 

Navit S, Jaiswal N, Khan SA, Malhotra S, Sharma A, Mukesh JS, Agarwal G. Antimicrobial efficacy of contemporary obturating materials used in primary teeth-an in-vitro study. J Clin Diagn Res. 2016. https://doi.org/10.7860/JCDR/2016/21883.8426.

Article  PubMed  PubMed Central  Google Scholar 

Parisay I, Ghoddusi J, Forghani M. A review on vital pulp therapy in primary teeth. Iran Endod J. 2015;10(1):6–15.

CAS  PubMed  Google Scholar 

Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32(36):9810–7. https://doi.org/10.1016/j.biomaterials.2011.08.085.

Article  CAS  PubMed  Google Scholar 

Parsaee F, Alizadeh A, Rezaee M, Alavi O, Alipour H. Evaluation of the osteoconductive properties of scaffold containing platete-enriched-fibrin (PRF) with three calcium phosphate (TCP) in the alveolar socket repair after tooth extraction: An animal study. J Biomater Appl. 2023;37(10):1789–800. https://doi.org/10.1177/08853282231170346.

Article  CAS  PubMed  Google Scholar 

Pimenta HC, Borges ÁH, Bandeca MC, Neves ATS, Fontes RG, da Silva PV, Aranha AM. Antimicrobial activity of filling materials used in primary teeth pulpotomy. J Int Oral Health. 2015;7(4):54–7.

PubMed  PubMed Central  Google Scholar 

Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, Visai L. Cytocompatibility and antibacterial properties of capping materials. Sci World J. 2014;2014: 181945. https://doi.org/10.1155/2014/181945.

Article  Google Scholar 

Samiei M, Aghazadeh M, Lotfi M, Shakoei S, Aghazadeh Z, Pakdel SMV. Antimicrobial efficacy of mineral trioxide aggregate with and without silver nanoparticles. Iran Endod J. 2013;8(4):166–70.

PubMed  PubMed Central  Google Scholar 

Seung J, Weir MD, Melo MAS, Romberg E, Nosrat A, Xu HHK, Tordik PA. A modified resin sealer: physical and antibacterial properties. J Endod. 2018;44(10):1553–7. https://doi.org/10.1016/j.joen.2018.06.016.

Article  PubMed  Google Scholar 

Shalhav M, Fuss Z, Weiss EI. In vitro antibacterial activity of a glass ionomer endodontic sealer. J Endod. 1997;23(10):616–9. https://doi.org/10.1016/S0099-2399(97)80172-0.

Article  CAS  PubMed  Google Scholar 

Sherief DI, Fathi MS, Abou El Fadl RK. Antimicrobial properties, compressive strength and fluoride release capacity of essential oil-modified glass ionomer cements —an in vitro study. Clin Oral Investig. 2021;25(4):1879–88. https://doi.org/10.1007/s00784-020-03493-0.

Article  PubMed  Google Scholar 

Shirali S, Javadinejad S, Tahmoraspour A. Antimicrobial effect of zinc oxide eugenol mixed with nanosilver on commonly isolated bacteria from the primary root canals with necrotic pulp. J Isfahan Dent Sch. 2020;16(3):254–63.

Google Scholar 

Siqueira JF Jr, Favieri A, Gahyva SM, Moraes SR, Lima KC, Lopes HP. Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod. 2000;26(5):274–7. https://doi.org/10.1097/00004770-200005000-00005.

Article  PubMed  Google Scholar 

Siqueira PC, Magalhães AP, Pires WC, Pereira FC, Silveira-Lacerda EP, Carrião MS, Bakuzis AF, Souza-Costa CA, Lopes LG, Estrela C. Cytotoxicity of glass ionomer cements containing silver nanoparticles. J Clin Exp Dent. 2015;7(5):e622–7. https://doi.org/10.4317/jced.52566.

Article  PubMed  PubMed Central  Google Scholar 

Tobias R. Antibacterial properties of dental restorative materials: a review. Int Endod J. 1988;21(2):155–60. https://doi.org/10.1111/j.1365-2591.1988.tb00969.x.

Article  CAS  PubMed  Google Scholar 

Yalcin M, Arslan U, Dundar A. Evaluation of antibacterial effects of pulp capping agents with direct contact test method. Eur J Dent. 2014;8(1):95–9. https://doi.org/10.4103/1305-7456.126256.

Article  PubMed  PubMed Central  Google Scholar 

Yin IX, Yu OY, Zhao IS, Mei ML, Li Q-L, Tang J, Chu C-H. Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch Oral Biol. 2019;102:106–12. https://doi.org/10.1016/j.archoralbio.2019.03.022.

Article  CAS  PubMed 

Comments (0)

No login
gif
Back To Top