Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S (2017) Glaucoma. Lancet 390:2183–2193. https://doi.org/10.1016/s0140-6736(17)31469-1
Mardin C (2013) Structural diagnostics of course observation for glaucoma. Ophthalmologe 110:1036–1044. https://doi.org/10.1007/s00347-012-2672-2
Article CAS PubMed Google Scholar
Jonas JB, Budde WM, Panda-Jonas S (1999) Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 43:293–320. https://doi.org/10.1016/s0039-6257(98)00049-6
Article CAS PubMed Google Scholar
Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N (2020) The diagnosis and treatment of glaucoma. Dtsch Arztebl Int 117:225–234. https://doi.org/10.3238/arztebl.2020.0225
Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192
Article CAS PubMed PubMed Central Google Scholar
Gardiner SK, Ren R, Yang H, Fortune B, Burgoyne CF, Demirel S (2014) A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol 157:540-549 e541-542. https://doi.org/10.1016/j.ajo.2013.11.007
Mardin C (2020) OCT-Diagnostik beim Glaukom: Tipps & Tricks. Augenheilkunde Update 10:51–63. https://doi.org/10.1055/a-0920-4393
Tatham AJ, Medeiros FA, Zangwill LM, Weinreb RN (2015) Strategies to improve early diagnosis in glaucoma. Prog Brain Res 221:103–133. https://doi.org/10.1016/bs.pbr.2015.03.001
Pazos M, Dyrda AA, Biarnés M, Gómez A, Martín C, Mora C, Fatti G, Antón A (2017) Diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes. Ophthalmology 124:1218–1228. https://doi.org/10.1016/j.ophtha.2017.03.044
Reis AS, O’Leary N, Yang H, Sharpe GP, Nicolela MT, Burgoyne CF, Chauhan BC (2012) Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 53:1852–1860. https://doi.org/10.1167/iovs.11-9309
Article PubMed PubMed Central Google Scholar
Enders P, Schaub F, Hermann MM, Cursiefen C, Heindl LM (2017) Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography. Br J Ophthalmol 101:138–142. https://doi.org/10.1136/bjophthalmol-2015-307730
Enders P, Schaub F, Adler W, Hermann MM, Dietlein TS, Cursiefen C, Heindl LM, Medscape (2018) Bruch’s membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs. Eye (Lond) 32:314–323. https://doi.org/10.1038/eye.2017.306
Article CAS PubMed Google Scholar
Enders P, Schaub F, Adler W, Nikoluk R, Hermann MM, Heindl LM (2017) The use of Bruch’s membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol 101:530–535. https://doi.org/10.1136/bjophthalmol-2016-308957
Enders P, Adler W, Kiessling D, Weber V, Schaub F, Hermann MM, Dietlein T, Cursiefen C, Heindl LM (2019) Evaluation of two-dimensional Bruch’s membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 97:60–67. https://doi.org/10.1111/aos.13698
Chauhan BC, O’Leary N, AlMobarak FA, Reis ASC, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120:535–543. https://doi.org/10.1016/j.ophtha.2012.09.055
Toshev AP, Lamparter J, Pfeiffer N, Hoffmann EM (2017) Bruch’s membrane opening-minimum rim width assessment with spectral-domain optical coherence tomography performs better than confocal scanning laser ophthalmoscopy in discriminating early glaucoma patients from control subjects. J Glaucoma 26:27–33. https://doi.org/10.1097/IJG.0000000000000532
Grewal DS, Tanna AP (2013) Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol 24:150–161. https://doi.org/10.1097/ICU.0b013e32835d9e27
Ajtony C, Balla Z, Somoskeoy S, Kovacs B (2007) Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 48:258–263. https://doi.org/10.1167/iovs.06-0410
Enders P, Bremen A, Schaub F, Hermann MM, Diestelhorst M, Dietlein T, Cursiefen C, Heindl LM (2017) Intraday repeatability of Bruch’s membrane opening-based neuroretinal rim measurements. Invest Ophthalmol Vis Sci 58:5195–5200. https://doi.org/10.1167/iovs.17-22812
He L, Yang H, Gardiner SK, Williams G, Hardin C, Strouthidis NG, Fortune B, Burgoyne CF (2014) Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Invest Ophthalmol Vis Sci 55:574–586. https://doi.org/10.1167/iovs.13-13245
Article PubMed PubMed Central Google Scholar
Unterlauft JD, Theilig T, Hasan S, Bohm MR, Rauscher F (2020) Analysis of glaucomatous changes of the macula using optical coherence tomography. Klin Monbl Augenheilkd 237:185–191. https://doi.org/10.1055/a-0808-4807
Unterlauft JD, Rehak M, Bohm MRR, Rauscher FG (2018) Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography. PLoS One 13:e0209610. https://doi.org/10.1371/journal.pone.0209610
Article PubMed PubMed Central Google Scholar
Takayama K, Hangai M, Durbin M, Nakano N, Morooka S, Akagi T, Ikeda HO, Yoshimura N (2012) A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:6904–6913. https://doi.org/10.1167/iovs.12-10210
Hood DC (2017) Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 57:46–75. https://doi.org/10.1016/j.preteyeres.2016.12.002
Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) Glaucomatous damage of the macula. Prog Retin Eye Res 32:1–21. https://doi.org/10.1016/j.preteyeres.2012.08.003
Ctori I, Huntjens B (2015) Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS One 10:e0129005. https://doi.org/10.1371/journal.pone.0129005
Article CAS PubMed PubMed Central Google Scholar
Jeoung JW, Choi YJ, Park KH, Kim DM (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429. https://doi.org/10.1167/iovs.12-11273
Gardiner SK, Demirel S, Reynaud J, Fortune B (2016) Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma. Invest Ophthalmol Vis Sci 57:1221–1227. https://doi.org/10.1167/iovs.15-18788
Article PubMed PubMed Central Google Scholar
No authors listed (2021) European Glaucoma Society terminology and guidelines for glaucoma, 5th edn. Br J Ophthalmol 105:1–169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines
Fingeret M, Suh MH, Hood DC, Ritch R (2018) Heidelberg Engineering GmbH. Glaucoma imaging atlas. A diagnostic imaging guide for assessment and management. buch.one - Offsetdruckerei Karl Grammlich GmbH, Pliezhausen
Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ (2012) Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol 130:312–318. https://doi.org/10.1001/archopthalmol.2011.1576
Article PubMed PubMed Central Google Scholar
Heindl LM, Adler W, El-Malahi O, Schaub F, Hermann MM, Dietlein TS, Cursiefen C, Enders P (2018) The optimal diameter for circumpapillary retinal nerve fiber layer thickness measurement by SD-OCT in glaucoma. J Glaucoma 27:1086–1093. https://doi.org/10.1097/IJG.0000000000001027
Rüfer F, Bartsch JJ, Erb C, Riehl A, Zeitz PF (2016) Epiretinal membrane as a source of errors during the measurement of peripapillary nerve fibre thickness using spectral-domain optical coherence tomography (SD-OCT). Graefes Arch Clin Exp Ophthalmol 254:2017–2023. https://doi.org/10.1007/s00417-016-3453-4
Mansberger SL, Menda SA, Fortune BA, Gardiner SK, Demirel S (2017) Automated segmentation errors when using optical coherence tomography to measure retinal nerve fiber layer thickness in glaucoma. Am J Ophthalmol 174:1–8. https://doi.org/10.1016/j.ajo.2016.10.020
Cohen J (1988) The signifiance of product moment r. In: Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Publishers, Hillsdale, pp 79–81
Comments (0)