Do CRISPR-based disease diagnosis methods qualify as point-of-care diagnostics for plant diseases?

Abdullah J, Saffie N, Sjasri FAR, et al. Rapid detection of Salmonella Typhi by loop-mediated isothermal amplification (LAMP) method. Braz J Microbiol. 2014;45:1385–91. https://doi.org/10.1590/S1517-83822014000400032.

Article  CAS  PubMed  Google Scholar 

Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science (1979). 2016;353(6299):aaf5573. https://doi.org/10.1126/science.aaf5573

Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582(7811):277–82. https://doi.org/10.1038/s41586-020-2279-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adiger S, Sridevi O. Isolation of DNA from mucilage-rich okra (Abelmoschus esculentus L.) for PCR analysis. Trends Biosci. 2014;7(16):2306–9.

Ali Z, Aman R, Mahas A, et al. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 2020;288: 198129. https://doi.org/10.1016/j.virusres.2020.198129.

Article  CAS  PubMed  Google Scholar 

Ali Z, Sánchez E, Tehseen M, et al. Bio-SCAN: a CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2. ACS Synth Biol. 2022;11(1):406–19. https://doi.org/10.1021/acssynbio.1c00499.

Aman R, Mahas A, Mahfouz M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth Biol. 2020;9(6):1226–33. https://doi.org/10.1021/acssynbio.9b00507.

Article  CAS  PubMed  Google Scholar 

Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine. 2019;18:428–31. https://doi.org/10.1016/j.nano.2019.03.006.

Article  CAS  PubMed  Google Scholar 

Arizti-Sanz J, Freije CA, Stanton AC, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11(1):1–9. https://doi.org/10.1038/s41467-020-19097-x.

Article  CAS  Google Scholar 

Augustine R, Hasan A, Das S, et al. Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel). 2020;9(8):182. https://doi.org/10.3390/biology9080182.

Article  CAS  PubMed  Google Scholar 

Azhar M, Phutela R, Kumar M, et al. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosens Bioelectron. 2021;183:113207. https://doi.org/10.1016/j.bios.2021.113207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (1979). 2007;315(5819):1709–12. https://doi.org/10.1126/science.1138140

Bayraç C, Eyidoğan F, Öktem HA. DNA aptamer-based colorimetric detection platform for Salmonella enteritidis. Biosens Bioelectron. 2017;98:22–8. https://doi.org/10.1016/j.bios.2017.06.029.

Article  CAS  PubMed  Google Scholar 

Bianchi V, Boni A, Bassoli M, et al. IoT and biosensors: a smart portable potentiostat with advanced cloud-enabled features. IEEE Access. 2021;9:141544–54. https://doi.org/10.1109/ACCESS.2021.3120022.

Article  Google Scholar 

Biosciences M. Diagnostics-the CRISPR-based detection platform. Mammoth Biosci. 2020;[Cited 1 July 2020]. n.d.

Broto M, Kaminski MM, Adrianus C, et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat Nanotechnol. 2022;1–7. https://doi.org/10.1038/s41565-022-01179-0.

Broughton JP, Deng X, Yu G, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–4. https://doi.org/10.1038/s41587-020-0513-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruch R, Baaske J, Chatelle C, et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 2019;31(51):1905311. https://doi.org/10.1002/adma.201905311.

Article  CAS  Google Scholar 

Cao H, Mao K, Ran F, et al. Paper device combining CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification for SARS-CoV-2 detection in wastewater. Environ Sci Technol. 2022;56(18):13245–53. https://doi.org/10.1021/acs.est.2c04727.

Article  CAS  PubMed  Google Scholar 

Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Plant Pathol. 2011;60(1):2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x.

Article  Google Scholar 

Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (1979). 2018;360(6387):436–9. https://doi.org/10.1126/science.aar6245.

Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron. 2020;165:112349. https://doi.org/10.1016/j.bios.2020.112349.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai G, Li Z, Luo F, et al. Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchim Acta. 2019;186:1–9. https://doi.org/10.1007/s00604-019-3724-y.

Article  CAS  Google Scholar 

de Puig H, Lee RA, Najjar D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci Adv. 2021;7(32):eabh2944. https://doi.org/10.1126/sciadv.abh2944.

Ding X, Yin K, Li Z, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun. 2020;11(1):1–10. https://doi.org/10.1038/s41467-020-18575-6.

Article  CAS  Google Scholar 

Domesle KJ, Yang Q, Hammack TS, et al. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. Int J Food Microbiol. 2018;264:63–76. https://doi.org/10.1016/j.ijfoodmicro.2017.10.020.

Article  CAS  PubMed  Google Scholar 

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (1979). 2014;346(6213):1258096. https://doi.org/10.1126/science.125809

English MA, Soenksen LR, Gayet R V, et al. Programmable CRISPR-responsive smart materials. Science (1979). 2019;365(6455):780–5. https://doi.org/10.1126/science.aaw5122.

Fozouni P, Son S, de León Derby MD, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2021;184(2):323–33. https://doi.org/10.1016/j.cell.2020.12.001.

Article  CAS  PubMed  Google Scholar 

Ghouneimy A, Mahfouz M. Streamlined detection of SARS-CoV-2 via Cas13. Nat Biomed Eng. 2022;6(8):925–7. https://doi.org/10.1038/s41551-022-00926-x.

Article  CAS  PubMed  Google Scholar 

Ghouneimy A, Ali Z, Aman R, Jiang W, Aouida M, Mahfouz M. CRISPR-based multiplex detection of human papillomaviruses for one-pot point-of-care diagnostics. ACS Synth Biol. 2024;13:837–50. https://doi.org/10.1021/acssynbio.3c00655.

Article  CAS  PubMed  Google Scholar 

Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (1979). 2018;360(6387):439–44. https://doi.org/10.1126/science.aam9321.

Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (1979). 2017;356(6336):438–42. https://doi.org/10.1126/science.aam9321.

Graham J, McNicol RJ, McNicol JW. A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theor Appl Genet. 1996;93(3):402–6. https://doi.org/10.1007/BF00223182.

Article  CAS  PubMed  Google Scholar 

Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019;3(6):427–37. https://doi.org/10.1038/s41551-019-0371-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hajime S, Yuya T, Asami M, et al. Amplification-free RNA detection with CRISPR–Cas13. Commun Biol. 2021;4(1). https://doi.org/10.1038/s42003-021-02001-8.

Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science (1979). 2018;362(6416):839–42. https://doi.org/10.1126/science.aav4294.

Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371(1707):20150496. https://doi.org/10.1098/rstb.2015.0496.

Article  CAS  Google Scholar 

Huang D, Ni D, Fang M, et al. Microfluidic ruler-readout and CRISPR Cas12a-responded hydrogel-integrated paper-based analytical devices (μReaCH-PAD) for visible quantitative point-of-care testing of invasive fungi. Anal Chem. 2021;93(50):16965–73. https://doi.org/10.1021/acs.analchem.1c04649.

Article  CAS  PubMed  Google Scholar 

Huang L, Ding L, Zhou J, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens Bioelectron. 2021;171:112685. https://doi.org/10.1016/j.bios.2020.112685.

Article  CAS  PubMed  Google Scholar 

Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Islam MT, Croll D, Gladieux P, et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 2016;14(1):84. https://doi.org/10.1186/s12915-016-0309-7.

Article  PubMed  PubMed Central  Google Scholar 

Islam T, Kasfy SH. CRISPR-based point-of-care plant disease diagnostics. Trends Biotechnol. 2022;41(2):144–6. https://doi.org/10.1016/j.tibtech.2022.10.002.

Article  PubMed  Google Scholar 

Jiao C, Sharma S, Dugar G, et al. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science (1979). 2021;372(6545):941–8. https://doi.org/10.1126/science.abe7106.

Jinek M, Chylinski K, Fonfara I, et al. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 1979;2012:337. https://doi.org/10.1126/science.1225829.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif