Model organisms and systems in neuroethology: one hundred years of history and a look into the future

Ache JM, Namiki S, Lee A, Branson K, Card GM (2019) State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nat Neurosci 22:1132–1139. https://doi.org/10.1038/s41593-019-0413-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal A, Sarel A, Derdikman D, Ulanovsky N, Gutfreund Y (2023) Spatial coding in the hippocampus and hyperpallium of flying owls. Proc Natl Acad Sci USA 120:e2212418120. https://doi.org/10.1073/pnas.2212418120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babies B, Lindemann JP, Egelhaaf M, Möller R (2011) Contrast-independent biologically inspired motion detection. Sensors 11:3303–3326. https://doi.org/10.3390/s110303303

Article  PubMed  PubMed Central  Google Scholar 

Bastian J (1976) Frequency response characteristics of electroreceptors in weakly electric fish (Gymnotoidei) with a pulse discharge. J Comp Physiol 112:165–180

Article  Google Scholar 

Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C (2014) Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–430. https://doi.org/10.1038/nature13427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell C, von der Emde G (1995) Electric organ corollary discharge pathways in mormyrid fish. J Comp Physiol A 177:463–479. https://doi.org/10.1007/BF00187482

Article  Google Scholar 

Biester EM, Hellenbrand J, Gruber J, Hamberg M, Frentzen M (2012) Identification of avian wax synthases. BMC Biochem 13:4. https://doi.org/10.1186/1471-2091-13-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borst A, Groschner LN (2023) Spatial correlation, input asymmetry and multiplication as fundamental characteristic as determined from behavior. How flies see motion. Ann Rev Neurosci 46:17–37. https://doi.org/10.1146/annurev-neuro-080422-111929

Article  CAS  PubMed  Google Scholar 

Borst A, Haag J, Mauss AS (2020) How fly neurons compute the direction of visual motion. J Comp Physiol A 206:109–124. https://doi.org/10.1007/s00359-019-01375-9

Article  Google Scholar 

Boumans M, Krings M, Wagner H (2015) Muscular arrangement and muscle attachment sites in the cervical region of the American barn owl (Tyto furcata pratincola). PLoS ONE 10:e0134272. https://doi.org/10.1371/journal.pone.0134272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46. https://doi.org/10.1016/0165-0173(83)90003-6

Article  Google Scholar 

Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246. https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carr CE, Heiligenberg W, Rose G (1986) The detection of small temporal disparities in the weakly electric fish Eigenmannia. J Neurosci 6:107–119. https://doi.org/10.1523/JNEUROSCI.06-01-00107.1986

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cazettes F, Fischer BJ, Pena JL (2014) Spatial cue reliability drives frequency tuning in the barn owl’s midbrain. Elife 3:e04854. https://doi.org/10.7554/eLife.04854

Article  PubMed  PubMed Central  Google Scholar 

Cellini B, Mongeau JM (2020) Active vision shapes and coordinates flight motor responses in flies. Proc Nat Acad Sci USA 117:23085–23095. https://doi.org/10.1073/pnas.1920846117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Changeux JP (2020) Discovery of the first neurotransmitter receptor: the acetylcholine nicotinic receptor. Biomolecules 10:547. https://doi.org/10.3390/biom10040547

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng KY, Frye MA (2020) Neuromodulation of insect motion vision. J Comp Physiol A 206:125–137. https://doi.org/10.1007/s00359-019-01383-9

Article  Google Scholar 

Cheong HS, Siwanowicz I, Card GM (2020) Multi-regional circuits underlying visually guided decision-making in Drosophila. Curr Opin Neurobiol 65:77–87. https://doi.org/10.1016/j.conb.2020.10.010

Article  CAS  PubMed  Google Scholar 

Clark CJ, LePiane K, Liu L (2020) Evolutionary and ecological correlates of quiet flight in nightbirds, hawks, falcons, and owls. Integr Comp Biol 60:1123–1134. https://doi.org/10.1093/icb/icaa039

Article  PubMed  Google Scholar 

Clarke SE, Longtin A, Maler L (2015) Contrast coding in the electrosensory system: parallels with visual computation. Nat Rev Neurosci 16:733–744. https://doi.org/10.1038/nrn4037

Article  CAS  PubMed  Google Scholar 

Collett TS (1980) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138:271–282. https://doi.org/10.1007/BF00657045

Article  Google Scholar 

Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly (Syritta pipiens L.). J Comp Physiol 99:1–66. https://doi.org/10.1007/BF01464710

Article  Google Scholar 

Currier TA, Pang MM, Clandinin TR (2023) Visual processing in the fly, from photoreceptors to behavior. Genetics 224:iyad064. https://doi.org/10.1093/genetics/iyad064

Article  PubMed  PubMed Central  Google Scholar 

Darwin (1872) The origin of species by means of natural selection, 6th edn. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511694295

Das S, Dodda A, Das S (2019) A biomimetic 2D transistor for audiomorphic computing. Nat Commun 10:3450. https://doi.org/10.1038/s41467-019-11381-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Kok-Mercado F, Habib M, Phelps T, Gregg L, Gailloud P (2013) Adaptations of the owl’s cervikal & cephalic arteries in relation to extreme neck rotation. Science 339:514–515

Google Scholar 

du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146. https://doi.org/10.1152/jn.1990.63.1.131

Article  PubMed  Google Scholar 

Egelhaaf M (2023) Optic flow based spatial vision in insects. J Comp Physiol A 209:541–561. https://doi.org/10.1007/s00359-022-01610-w

Article  Google Scholar 

Fenk LM, Kim AJ, Maimon G (2021) Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Curr Biol 31:4608–4619. https://doi.org/10.1016/j.cub.2021.09.068

Article  CAS  PubMed  Google Scholar 

Ferger R, Shadron K, Fischer BJ, Peña JL (2021) Barn owl’s auditory space map activity matching conditions for a population vector readout to drive adaptive sound-localizing behavior. J Neurosci 41:10305–10315. https://doi.org/10.1523/JNEUROSCI.1061-21.2021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fotowat H, Lee C, Jaeyoon Jun C, Maler L (2019) Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. Elife 8:e44119. https://doi.org/10.7554/eLife.44119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrich RW, Jacobson GA, Zhu P (2010) Circuit neuroscience in zebrafish. Curr Biol 20:R371–R381. https://doi.org/10.1016/j.cub.2010.02.039

Article  CAS  PubMed  Google Scholar 

Froemke RC, Young LJ (2021) Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci 44:359–381. https://doi.org/10.1146/annurev-neuro-102320-102847

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukutomi M, Carlson BA (2020) A history of corollary discharge: contributions of mormyrid weakly electric fish. Front Integr Neurosci 14:42. https://doi.org/10.3389/fnint.2020.00042

Article  PubMed  PubMed Central  Google Scholar 

Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforschung B 11:513–524. https://doi.org/10.1515/znb-1956-9-1004

Article  Google Scholar 

Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981:49–70

Google Scholar 

Hausmann L, von Campenhausen M, Endler F, Singheiser M, Wagner H (2009) Improvements of sound-localization capabilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal. PLoS ONE 4:e7721. https://doi.org/10.1371/journal.pone.0007721

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif