Comparative utility of omnipolar and bipolar electroanatomic mapping methods to detect and localize dual nodal substrate in patients with atrioventricular nodal reentrant tachycardia

Hl E, Ndrepepa G, Dong J, Deisenhofer I, Schreieck J, Schneider M, Plewan A, Karch M, Weyerbrock S, Wade D, Zrenner B, Schmitt C. Acute and long-term results of slow pathway ablation in patients with atrioventricular nodal reentrant tachycardia—an analysis of the predictive factors for arrhythmia recurrence. Pacing Clin Electrophysiol. 2005;28:102–10.

Article  Google Scholar 

Katritsis DG, Marine JE, Contreras FM, Fujii A, Latchamsetty R, Siontis KC, Katritsis GD, Zografos T, John RM, Epstein LM, Michaud GF, Anter E, Sepahpour A, Rowland E, Buxton AE, Calkins H, Morady F, Stevenson WG, Josephson ME. Catheter ablation of atypical atrioventricular nodal reentrant tachycardia. Circulation. 2016;134:1655–63.

Article  PubMed  Google Scholar 

Backhoff D, Klehs S, Müller MJ, Schneider HE, Kriebel T, Paul T, Krause U. Long-term follow-up after catheter ablation of atrioventricular nodal reentrant tachycardia in children. Circ Arrhythm Electrophysiol. 2018;9:e004264.

Article  Google Scholar 

Kimman G-JP, Bogaard MD, Dessel PFHMV, Boersma LVA, Wever EFD, Jordaens LJ, Hemel NMV. Ten years follow-up after radiofrequency catheter ablation for atrioventricular nodal reentrant tachycardia. Forever cured or a source for new arrhythmias? Heart Rhythm. 2005;2:S152.

Article  Google Scholar 

Siebels H, Sohns C, Nürnberg J-H, Siebels J, Langes K, Hebe J. Value of an old school approach: safety and long-term success of radiofrequency current catheter ablation of atrioventricular nodal reentrant tachycardia in children and young adolescents. J Interv Card Electr. 2018;53:267–77.

Article  Google Scholar 

Asirvatham SJ, Stevenson WG. Atrioventricular nodal block with atrioventricular nodal reentrant tachycardia ablation. Circ Arrhythm Electrophysiol. 2015;8:745–7.

Article  PubMed  Google Scholar 

Li Y-G, Grönefeld G, Bender B, Machura C, Hohnloser SH. Risk of development of delayed atrioventricular block after slow pathway modification in patients with atrioventricular nodal reentrant tachycardia and a pre-existing prolonged PR interval. Eur Heart J. 2001;22:89–95.

Article  CAS  PubMed  Google Scholar 

Jackman WM, Beckman KJ, McClelland JH, Wang X, Friday KJ, Roman CA, Moulton KP, Twidale N, Hazlitt HA, Prior MI, Oren J, Overholt ED, Lazzara R. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. New Engl J Med. 1992;327:313–8.

Article  CAS  PubMed  Google Scholar 

Drago F, Calvieri C, Russo MS, Remoli R, Pazzano V, Battipaglia I, Gimigliano F, Allegretti G, Silvetti MS. Low-voltage bridge strategy to guide cryoablation of typical and atypical atrioventricular nodal re-entry tachycardia in children: mid-term outcomes in a large cohort of patients. Ep Europace. 2020;23:271–7.

Article  Google Scholar 

Marshall AM, Erickson CC, Danford DA, Kugler JD, Thomas VC. The low specificity of low voltage bridges associating atrioventricular nodal reentry in pediatric patients. J Interv Card Electr. 2019;54:277–81.

Article  Google Scholar 

Aartsen AV, Law IH, Maldonado JR, Bergen NHV. Propagation mapping wave collision correlates to the site of successful ablation during voltage mapping in atrioventricular nodal reentry tachycardia. J Innov Card Rhythm Manag. 2017;8:2836–42.

Article  PubMed  PubMed Central  Google Scholar 

Reddy CD, Ceresnak SR, Motonaga KS, Avasarala K, Feller C, Trela A, Hanisch D, Dubin AM. Bridge to success: a better method of cryoablation for atrioventricular nodal reentrant tachycardia in children. Heart Rhythm. 2017;14:1649–54.

Article  PubMed  Google Scholar 

Kumagai K, Toyama H. Activation pattern within Koch’s triangle during sinus rhythm in patients with and without atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol. 2024;67(1):139–46.

Article  PubMed  Google Scholar 

Deno DC, Bhaskaran A, Morgan DJ, Goksu F, Batman K, Olson GK, Magtibay K, Nayyar S, Porta-Sánchez A, Laflamme MA, Massé S, Aukhojee P, Nair K, Nanthakumar K. High resolution, live, directional mapping. Heart Rhythm. 2020;17(9):1621–8.

Article  PubMed  Google Scholar 

O’Leary ET, Harris J, Gauvreau K, Gentry C, Dionne A, Abrams DJ, Alexander ME, Bezzerides VJ, DeWitt ES, Triedman JK, Walsh EP, Mah DY. Radiofrequency catheter ablation for pediatric atrioventricular nodal reentrant tachycardia: impact of age on procedural methods and durable success. J Am Heart Assoc. 2021;11:e022799.

Article  Google Scholar 

Bailin SJ, Korthas MA, Weers NJ, Hoffman CJ. Direct visualization of the slow pathway using voltage gradient mapping: a novel approach for successful ablation of atrioventricular nodal reentry tachycardia. Ep Europace. 2011;13:1188–94.

Article  Google Scholar 

Drago F, Battipaglia I, Russo MS, Remoli R, Pazzano V, Grifoni G, Allegretti G, Silvetti MS. Voltage gradient mapping and electrophysiologically guided cryoablation in children with AVNRT. Ep Europace. 2017;20:665–72.

Article  Google Scholar 

Bailin SJ, Rhodes TE, Arter JC, Kocherla C, Kaushik N. Physiology of slow pathway conduction during sinus rhythm: evidence from high density mapping within the triangle of Koch. J Interv Card Electrophysiol. 2022;63:573–80.

Article  PubMed  Google Scholar 

Drago F, Tamborrino PP, Porco L, Campisi M, Fanti V, Annibali R, Silvetti MS. Koch’s triangle voltage mapping for cryoablation of slow pathway in children: preliminary data of a novel high-density technique. J Interv Card Electrophysiol. 2022;63:621–8.

Article  PubMed  Google Scholar 

Karatela MF, Dowell RS, Friedman D, Jackson KP, Piccini JP. Omnipolar versus bipolar electrode mapping in patients with atrial fibrillation undergoing catheter ablation. Jacc Clin Electrophysiol. 2022;8(12):1539–52.

Article  PubMed  Google Scholar 

Haissaguerre M, Gaita F, Fischer B, Commenges D, Montserrat P, d’Ivernois C, Lemetayer P, Warin JF. Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy. Circulation. 2018;85:2162–75.

Article  Google Scholar 

Comments (0)

No login
gif