Targeting specific steroidogenic enzymes is effective in decreasing testosterone synthesis, resulting in significant antitumor effects in prostate cancer. Such treatments result in disruptions of complicated and intertwining pathways with systemic physiologic consequences via effects on the adrenal gland and renin–angiotensin–aldosterone axis. This review highlights some of these aspects that need to be taken into consideration when treating patients with androgen biosynthesis inhibitors.
Recent findingsTargeting CYP17A1, a key enzyme involved in androgen biosynthesis, is a well established treatment in prostate cancer. More recently, efforts are underway to target a gatekeeper enzyme of steroidogenesis, CYP11A1. This enzyme mediates conversion of cholesterol to pregnenolone, the first step in steroid hormone biogenesis. Studies are beginning to demonstrate antitumor effects of ODM-208, a CYP11A1 inhibitor in prostate cancer. Although anticipated to have a therapeutic role in prostate cancer, there are potential downstream effects of CYP11A1 targeting arising from suppression of the entire adrenal cortex, including long-term adrenal insufficiency and possibly cardiovascular dysregulation.
SummaryAgents targeting androgen biosynthesis can have systemic implications. Balancing management of prostate cancer with better understanding of the mechanisms associated with potential side effects will allow for patients to obtain improved antitumor benefit while mitigating against treatment-associated adverse effects.
Comments (0)