Cloud-Base Height Retrieval from MODIS Satellite Data Based on Self-Organizing Neural Networks

J. R. Mecikalski, W. F. Feltz, J. J. Murray, D. B. Johnson, K. M. Bedka, S. T. Bedka, A. J. Wimmers, M. Pavlonis, T. A. Berendes, J. Haggerty, P. Minnis, B. Bernstein, and E. Williams, “Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash,” Bull. Amer. Meteor. Soc. 88, 1589–1607 (2007). https://doi.org/10.1175/BAMS-88-10-1589

Article  ADS  Google Scholar 

S. Gebremariam, S. Li, and M. Weldegaber, “Observed correlation between aerosol and cloud base height for low clouds at Baltimore and New York, United States,” Atmosphere 9 (4), 143 (2018). https://doi.org/10.3390/atmos9040143

Article  ADS  Google Scholar 

Y. Zheng, D. Rosenfeld, and Z. Li, “The relationships between cloud top radiative cooling rates, surface latent heat fluxes, and cloud-base heights in marine stratocumulus,” J. Geophys. Res.: Atmos. 123, 11 678–11 690 (2018). https://doi.org/10.1029/2018JD028579

Article  Google Scholar 

N. V. Khuong, “Evaluation of the influence of meteorology on the propagation of radio waves in X-bands,” Trudy MFTI 12 (3), 94–103 (2020). https://doi.org/10.53815/20726759_2020_12_3_94

Article  Google Scholar 

N. I. Tolmacheva and A. D. Kryuchkova, Meteorological Measurement Techniques and Instruments (PGNIU, Perm, 2013) [in Russian].

Google Scholar 

A. S. Boreysho, A. A. Kim, M. A. Konyaev, V. S. Luginya, A. V. Morozov, and A. E. Orlov, “Modern lidar systems for atmosphere remote sensing,” Fotonika 13 (7), 648–657 (2019). https://doi.org/10.22184/1992-7296

Article  Google Scholar 

Guide to Meteorological Instruments and Observation Techniques (WMO, Geneva, Switzerland, 2017).

T. T. Wilheit and K. D. Hutchison, “Retrieval of cloud base heights from passive microwave and cloud top temperature data,” IEEE Trans. Geosci. Remote Sens. 38, 1253–1259 (2000). https://doi.org/10.1109/36.843017

Article  ADS  Google Scholar 

J. M. Forsythe, T. H. Vonder Haar, and D. L. Reinke, “Cloud base height estimates using a combination of meteorological satellite imagery and surface reports,” J. Appl. Meteorol. 39, 2336–2347 (2000). https://doi.org/10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2

Article  ADS  Google Scholar 

K. D. Hutchison, “The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA’s EOS Aqua mission,” Int. J. Remote Sens. 23, 5249–5265 (2002). https://doi.org/10.5194/acp-10-7197-2010

Article  Google Scholar 

C. J. Stubenrauch, S. Cros, A. Guignard, and N. Lamquin, “A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat,” Atmos. Chem. Phys. 10, 7197–7214 (2010).

Article  ADS  Google Scholar 

B. Koffi, M. Schulz, F.-M. Breon, J. Griesfeller, D. M. M. Winker, Y. Balkanski, S. Bauer, T. Berntsen, M. Chin, W. D. Collins, F. Dentener, T. Diehl, R. C. Easter, S. J. Ghan, P. A. Ginoux, S. Gong, L. W. Horowitz, T. Iversen, A. Kirkevag, D. M. Koch, M. Krol, G. Myhre, P. Stier, and T. Takemura, “Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom Phase I results,” J. Geophys. Res. 117 (2012). https://doi.org/10.1029/2011JD016858

L. Oreopoulos, N. Cho, and D. Lee, “New insights about cloud vertical structure from CloudSat and CALIPSO observations,” J. Geophys. Res. Atmos. 122, 9280–9300 (2017). https://doi.org/10.1002/2017JD026629

Article  ADS  Google Scholar 

S. Tanelli, S. L. Durden, I. M. Eastwood, K. S. Pak, D. G. Reinke, Ph. Partain, J. M. Haynes, and R. T. Marchand, “CloudSat’s Cloud Profiling Radar after two years in orbit: Performance, calibration, and processing,” IEEE Trans. Geosci. Remote Sens. 46 ((11)), 3560–3573 (2008). doi . 2002030https://doi.org/10.1109/TGRS.2008

D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, and K. A. Powell, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009). https://doi.org/10.1175/2009JTECHA1281.1

Article  ADS  Google Scholar 

H. Masunaga, Satellite Measurements of Clouds and Precipitation: Theoretical Basis (Springer, Singapore, 2022).

Book  Google Scholar 

S. D. Miller, J. M. Forsythe, P. T. Partain, J. M. Haynes, R. L. Bankert, M. Sengupta, C. Mitrescu, J. D. Hawkins, and T. H. Haar Vonder, “Estimating three-dimensional cloud structure via statistically blended satellite observations,” J. Appl. Meteorol. Climatol. 53, 437–455 (2014). https://doi.org/10.1175/JAMC-D-13-070.1

Article  ADS  Google Scholar 

Y.-J. Noh, J. M. Forsythe, S. D. Miller, C. J. Seaman, Y. Li, A. K. Heidinger, D. T. Lindsey, M. A. Roger, and P. T. Partain, “Cloud-base height estimation from VIIRS. Part II: A statistical algorithm based on a-train satellite data,” J. Atmos. Ocean 34, 585–598 (2017). https://doi.org/10.1175/JTECH-D-16-0110.1

Article  Google Scholar 

P. Minnis, S. Sun-Mack, Ya. Chen, F.-L. Chang, C. R. Yost, W. L. Smith, Jr., P. W. Heck, R. F. Arduini, S. T. Bedka, Yu. Yi, G. Hong, Z. Jin, D. Painemal, R. Palikonda, B. R. Scarino, D. A. Spangenberg, R. A. Smith, Q. Z. Trepte, P. Yang, and Y. Xie, “CER-ES MODIS cloud product retrievals for edition 4—Part I: Algorithm changes,” IEEE Trans. Geosci. Remote Sens. 59, 2744–2780 (2021). https://doi.org/10.1109/TGRS.2020.3008866

H. W. Barker, M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, “A 3D cloud-construction algorithm for the EarthCARE satellite mission,” Q. J. R. Meteorol. Soc. 137, 1042–1058 (2011). https://doi.org/10.1002/qj.824

Article  ADS  Google Scholar 

X. J. Sun, H. R. Li, H. W. Barker, R. W. Zhang, Y. B. Zhou, and L. Liu, “Satellite-based estimation of cloud-base heights using constrained spectral radiance matching,” Q. J. R. Meteorol. Soc. 142, 224–232 (2016). https://doi.org/10.1002/qj.2647

Article  ADS  Google Scholar 

S. Chen, C. Cheng, X. Zhang, L. Su, B. Tong, C. Dong, F. Wang, B. Chen, W. Chen, and D. Liu, “Construction of nighttime cloud layer height and classification of cloud types,” Remote Sens. 12, 668 (2020). https://doi.org/10.3390/rs12040668

Article  ADS  Google Scholar 

D. P. Grossvenor and R. Wood, “The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds,” Atmos. Chem. Phys. 14, 7291–7321 (2014). https://doi.org/10.5194/acp-14-7291-2014

Article  ADS  Google Scholar 

P. Minnis, S. Sun-Mack, W. L. J. Smith, G. Hong, and Y. Chen, “Advances in neural network detection and retrieval of multilayer clouds for CERES using multispectral satellite data,” Proc. SPIE—Int. Soc. Opt. Eng. 11152 (2019). https://doi.org/10.1117/12.2532931

Z. Tan, J. Huo, S. Ma, D. Han, X. Wang, S. Hu, and W. Yan, “Estimating cloud base height from Himawari-8 based on a random forest algorithm,” Int. J. Remote Sens. 42 ((7)), 2485–2501 (2021). https://doi.org/10.1080/01431161.2020.1854891

Article  Google Scholar 

Y.-J. Noh, J. M. Haynes, S. D. Miller, C. J. Seaman, A. K. Heidinger, J. Weinrich, M. S. Kulie, M. Niznik, and B. J. Daub, “A framework for satellite-based 3D cloud data: An overview of the VIIRS cloud base height retrieval and user engagement for aviation applications,” Remote Sens. 14, 5524 (2022). https://doi.org/10.3390/rs14215524

Article  ADS  Google Scholar 

S. D. Miller, Y.-J. Noh, J. F. Forsythe, C. J. Seaman, Y. Li, A. K. Heidinger, and D. T. Lindsey, AWG Cloud Base Algorithm (ACBA) (NOAA NESDIS, Silver Spring, MD, USA, 2019).

Google Scholar 

Code for Prompt Transmission of Surface Meteorological Observation Data from the Roshydromet Station Network (CodeKN-01 SYNOP) (Triada, Moscow, 2013) [in Russian].

B. M. Braun, T. H. Sweetser, C. Graham, and J. Bartsch, “CloudSat’s A-train exit and the formation of the C‑train: An orbital dynamics perspective,” IEEE Aerospace Conf. Proc., 18759265 (2019). https://doi.org/10.1109/AERO.2019.8741958

R. Eastman and S. G. Warren, “Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean,” J. Clim. 27, 2386–2404 (2013). https://doi.org/10.1175/JCLI-D-13-00352.1

Article  ADS  Google Scholar 

G. G. Mace and Q. Zhang, “The CloudSat Radar-Lidar Geometrical Profile product (RL-GeoProf): Updates, improvements and selected results,” J. Geophys. Res.: Atmos. 119, 9441–9462 (2014). https://doi.org/10.1002/2013JD021374

Article  ADS  Google Scholar 

The Automated Surface Observing System: ASOS User’s Guide (NOAA, Washington D.C., USA? 1998).

J. Mulmenstadt, O. Sourdeval, D. S. Henderson, T. S. L’Ecuyer, C. Unglaub, L. Jungandreas, C. Bohm, L. M. Russell, and J. Quaas, “Using CALIOP to estimate cloud-field base height and its uncertainty: The Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset,” Earth Syst. Sci. Data 10, 2279–2293 (2018). https://doi.org/10.5194/essd-10-2279-2018

Article  ADS  Google Scholar 

S. K. Platnick, G. Meyer, M. D. King, G. Wind, N. Amarasinghe, B. Marchant, G. T. Arnold, Z. Zhang, P. A. Hubanks, R. E. Holz, P. Yang, W. L. Ridgway, and J. Riedi, “The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua,” IEEE Trans. Geosci. Remote Sens. 55, 502–525 (2017). https://doi.org/10.1109/TGRS.2016.2610522

Article  ADS  Google Scholar 

S. Haykin, Neural Networks. A Comprehensive Foundation (Prentice Hall, 1998).

Google Scholar 

E. Weisz, J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, “Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals,” Geophys. Rev. Lett. 34, L17811 (2007). https://doi.org/10.1029/2007GL030676

Article  ADS  Google Scholar 

C.-Y. Liu, C.-H. Chiu, P.-H. Lin, and M. Min, “Comparison of Cloud-top property retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP and radiosonde,” J. Geophys. Res.: Atmos. 125, e2020JD032683 (2020). https://doi.org/10.1029/2020JD032683

X. Lu, F. Mao, D. Rosenfeld, Y. Zhu, Z. Pan, and W. Gong, “Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO,” Atmos. Chem. Phys. 21, 11979–12003 (2021). https://doi.org/10.5194/acp-21-11979-2021

Article  ADS  Google Scholar 

S. Osovskii, Neural Networks for Data Processing (Finansy i statistika, Moscow, 2002) [in Russian].

Z. M. Makhover, Climatology of Tropopause (Gidrometeoizdat, Leningrad, 1983 [in Russian].

Google Scholar 

B. Marchant, S. Platnick, K. Meyer, and G. Wind, “Evaluation of the MODIS Collection 6 mulitlayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products,” Atmos. Meas. Technol. 13, 3263–3275 (2020). https://doi.org/10.5194/amt-13-3263-2020

Article  Google Scholar 

D. L. Mitchell, A. Garnier, J. Pelon, and E. Erfani, “CALIPSO (IIR-CALIOP) retrievals of cirrus cloud ice-particle concentrations,” Atmos. Chem. Phys. 18, 17325–17354 (2018). https://doi.org/10.5194/acp-18-17325-2018

Article  ADS  Google Scholar 

V. Bewick, L. Cheek, and J. Ball, “Statistics Review 7: Correlation and regression,” Crit. Care 7 (6), 451–459 (2003). https://doi.org/10.1186/cc2401

Article  Google Scholar 

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-Squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation,” Peer. J. Comput. Sci. 7, e623 (2021). https://doi.org/10.7717/peerj-cs.623

Article  Google Scholar 

留言 (0)

沒有登入
gif