Non-Line-of-Sight Optical Communication: Field, Laboratory, and Numerical Experiments in Russia in 2012–2022

D. E. Sunstein, PhD Thesis (Massachusetts Institute of Technology, Massachusetts, 1968), pp. 58–59.

Di-yong Peng, Jun Shi, Guang-hui Peng, Sha-li Xiao, Shan-he Xu, Shan Wang, and Feng Liu, “An ultraviolet laser communication system using frequency-shift keying modulation scheme,” Optoelectron. Lett. 11, 65–68 (2015).

Article  ADS  Google Scholar 

Renzhi Yuan, Jianshe Ma, Ping Su, Yuhan Dong, and Julian Cheng, “Monte-Carlo integration models for multiple scattering based optical wireless communication,” IEEE Trans. Commun. 68 (1), 334–348 (2020).

Article  ADS  Google Scholar 

V. N. Pozhidaev, “Feasibility of ultraviolet communication lines based on the effect of molecular and aerosol scattering in the atmosphere,” Radiotekh. Elektron. 22 (10), 2190–2192 (1977).

ADS  Google Scholar 

B. V. Poller, “Local optical wireless networks with a possibility of using an atmospheric communication channel with scattering,” in Proc. of the 10th International Scientific-Engineering Conference “Radio Navigation and Communications” (Voronezh, 2004) [in Russian]

V. E. Zuev and G. M. Krekov, Modern Problems of Atmospheric Optics. Vol. 2. Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

M. V. Panchenko, M. V. Kabanov, Yu. A. Pkhalagov, B. D. Belan, V. S. Kozlov, S. M. Sakerin, D. M. Kabanov, V. N. Uzhegov, N. N. Shchelkanov, V. V. Polkin, S. A. Terpugova, G. N. Tolmachev, E. P. Yausheva, M. Yu. Arshinov, D. V. Simonenkov, V. P. Shmargunov, D. G. Chernov, Yu. S. Turchinovich, Vas. V. Pol’kin, T. B. Zhuravleva, I. M. Nasrtdinov, and P. N. Zenkova, “Integrated studies of tropospheric aerosol at the Institute of Atmospheric Optics (development stages),” Atmos. Ocean. Opt. 33 (1), 27–41 (2020).

Article  Google Scholar 

Atmospheric and Oceanic Optics, Ed. by K.S. Shifrin (Nauka, Moscow, 1981) [in Russian].

Google Scholar 

Ocean Optics. Vol. 2. Applied Ocean Optics, Ed. by A.S. Monin (Nauka, Moscow, 1983) [in Russian].

Google Scholar 

I. A. Sutorikhin, V. I. Bukatyi, and O. B. Akulova, Spectral Transparency of Water in Different Lake Types in the Altai Territory (Altai State University Publishing House, Barnaul, 2015) [in Russian].

Google Scholar 

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

Google Scholar 

V. E. Zuev, V. V. Belov, and V. V. Veretennikov, System Theory in Optics of Disperse Media (Spektr, Tomsk, 1997) [iin Russian].

Google Scholar 

V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing,” Atmos. Ocean. Opt. 29 (5), 533–540 (2016).

Article  Google Scholar 

G. Z. Loboda, “Modification of the double local estimate of the Monte Carlo method in radiation transfer theory,” Rus. J. Numerical Analysis Math. Modeling 26 (5), 491–500 (2011).

MathSciNet  Google Scholar 

V. V. Belov, I. Juwiler, N. Blaunstein, M. V. Tarasenkov, and E. S. Poznakharev, “NLOS communication: Theory and experiments in the atmosphere and underwater,” Atmosphere 11 (10), 1122–1137 (2020).

Article  ADS  Google Scholar 

M. V. Tarasenkov, V. V. Belov, and E. S. Poznakharev, “Simulation of information transfer through atmospheric channels of scattered laser radiation propagation,” Atmos. Ocean. Opt. 30 (5), 412–416 (2017).

Article  Google Scholar 

M. V. Tarasenkov, S. A. Peshkov, and E. S. Poznakharev, “Estimated bit error rate in the atmospheric optical communication channel based on scattered radiation in the UV-wavelength range in the daytime and at night,” Fotonics Russia 17 (1) (2023). https://doi.org/10.22184/1993-7296.FRos.2023.17.1.46.56

https://katodnv.com. Cited May 15, 2023.

F. X. Kneizys, E. P. Shettle, G. P. Anderson, L. W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7. ARGL-TR-86-0177 (AGFL, Hansom AFB, 1988).

Google Scholar 

M. V. Tarasenkov, V. V. Belov, and E. S. Poznakharev, “statistical simulation of characteristics of an optical communication channel based on scattered radiation with an unmanned aerial vehicle,” Atmos. Ocean. Opt. 35 (S1), S8–S16 (2022).

Article  ADS  Google Scholar 

M. V. Tarasenkov, V. V. Belov, and E. S. Poznakharev, “Statistical simulation of the characteristics of diffuse underwater optical communication,” Atmos. Ocean. Opt. 32 (4), 387–392 (2019).

Article  Google Scholar 

V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).

Article  Google Scholar 

V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, Yu. V. Gridnev, V. O. Troitskii, and V. A. Dimaki, “Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013, Atmos. Ocean. Opt. 28 (3), 202–208 (2015).

Article  Google Scholar 

V. N. Abramochkin, V. V. Belov, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic communication in the atmosphere using diffuse laser radiation. Experiments in the field,” Light & Engineering 25 (4), 41–49 (2017).

Google Scholar 

V. V. Belov, M. V. Tarasenkov, and V. N. Abramochkin, “Bistatic atmospheric optoelectronic communication systems (field experiments),” Tech. Phys. Lett. 40 (10), 871–874 (2014).

Article  ADS  Google Scholar 

V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, and V. O. Troitskii, “Over-the-horizon optoelectronic communication systems,” Russ. Phys. J. 57 (7), 202–208 (2014).

Article  Google Scholar 

V. V. Belov, “Optical communication based on scattered or reflected laser radiation,” Svetotekhnika, No. 6, 6–12 (2018).

Google Scholar 

V. V. Belov, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic UV communication on scattered laser radiation,” Atmos. Ocean. Opt. 31 (6), 698–701 (2018),

Article  Google Scholar 

V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, S. P. Kulaev, M. V. Tarasenkov, V. O. Troitskii, and A. V. Fedosov, “Bistatic optoelectronic communication in the UV wavelength range. Field experiments 2016,” Opt. Atmos. Okeana 30 (2), 111–114 (2017). https://doi.org/10.15372/AOO20170201

Article  Google Scholar 

V. A. Dimaki, V. B. Sukhanov, V. O. Troitskii, A. G. Filonov, and D. Yu. Shestakov, “A copper bromide vapor laser with computer control of the repetitive-pulse, train, and waiting operating modes,” Instrum. Exp. Tech. 51 (6), 890–893 (2008).

Article  Google Scholar 

V. G. Arsent’ev, A. S. Berestyak, and G. I. Krivolapov, “On the effectiveness of the pulse method for data transmission in autonomous monitoring systems,” in Materials of the II All-Russian Scientific and Technical Conference “Scientific and Engineering Support of Research and Development of the Arctic Ocean Shelf” (INFOSPH-ERE, Novosibirsk, 2012), pp. 178–180.

M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, E. V. Pokrovskii, G. N. Tolmachev, and A. V. Fofonov, “Sites for monitoring of greenhouse gases and gases oxidizing the atmosphere,” Atmos. Ocean. Opt. 20 (1), 45–53 (2007).

Google Scholar 

Yu. A. Pkhalagov and V. N. Uzhegov, “Statistical method of separation of the IR radiation extinction coefficients into components,” Opt. Atmos. Okeana 1 (10), 3–11 (1988).

Google Scholar 

Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “Automated multiwave meter of spectral transmission of the ground layer of the atmosphere,” Atmos. Ocean. Opt. 5 (6), 423–425 (1992).

Google Scholar 

V. N. Uzhegov, A. P. Rostov, and Yu. A. Pkhalagov, “Automated path photometer,” Opt. Atmos. Okeana 26 (7), 590–594 (2013).

Google Scholar 

V. V. Belov, E. S. Poznakharev, M. V. Tarasenkov, and A. V. Fedosov, “Non-coplanar bistatic optical communication systems. Field and laboratory experiments,” Opt. Atmos. Okeana 35 (1), 63–66 (2022). https://doi.org/10.15372/AOO20220109

Article  Google Scholar 

V. V. Belov, V. N. Abramochkin, A. N. Kudryavtsev, M. V. Tarasenkov, A. V. Fedosov, and E. S. Poznakharev, “Instrument for measuring the water extinction coefficient under laboratory and field conditions,” Opt. Atmos. Okeana 32 (12), 983–985 (2019). https://doi.org/10.15372/AOO20191206

Article  Google Scholar 

V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Bistatic optoelectronic communication systems: Field experiments in artificial and natural water reservoirs,” Atmos. Ocean. Opt. 30 (4), 366–371 (2017). https://doi.org/10.1134/S1024856017040042

Article  Google Scholar 

I. A. Sutorikhin, V. I. Bukatyy, M. E. Litvikh, and K. Yu. Ekkerdt, “The influence of suspended matter on the spectral transparency of lakes in the Altai Territory,” in Abstracts of the XXII International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2016), p. 93.

B. V. Poller, V. M. Klement’ev, A. V. Britvin, Yu. D. Kolomnikov, and A. B. Poller, “Experimental parameters of teragercovyh polymer photonic crystal waveguides,” Interekspo Geo-Sibir 1 (5), 246–249 (2012).

Google Scholar 

A. V. Britvin, A. B. Poller, B. V. Poller, and A. E. Kusakina, “Characteristics of the transformation of optical signals in polymer films with phosphors with nano particles of iron,” Interekspo Geo-Sibir 2 (4), 22–26 (2012).

Google Scholar 

B. V. Poller, A. V. Britvin, and A. E. Kusakina, “Experimental characteristics of distribution of laser signals on horizontal and inclined routes in mountain Altai,” Interekspo Geo-Sibir 5 (3), 108–110 (2013).

Google Scholar 

A. V. Britvin, N. S. Nikitenko, V. F. Plyusnin, B. V. Poller, A. B. Poller, and N. V. Shakhov, “On photostability of acrylate and polymethyl methacrylate planar-fiber structures with luminophores Cumarin 7, 47, 120; Popop; NOL8 for Uv information systems,” Opt. Spektroskop. 130 (2), 311–316 (2022).

Google Scholar 

A. V. Britvin, N. S. Nikitenko, A. B. Poller, B. V. Poller, and N. V. Shakhov, “Characteristics of trends in the radiation dynamics of polymer planar waveguide structures with phosphors for ultraviolet information systems during long-term field tests,” Problemy Informatiki, No. 3, 5–13 (2022).

Google Scholar 

A. V. Britvin, I. S. Mesenzova, N. A. Pavlov, A. V. Povazhaev, and B. V. Poller, “Experimental characteristics of ultraviolet multilayer signals distribution on the trails of Kaitanak Observatory in the Republic of Altai,” Interekspo Geo-Sibir 2 (5), 134–140 (2018).

Google Scholar 

V. S. Marchuk, “The use of MIMO technology in open non-line-of-sight optical communication systems to improve the reliability of information transmission,” Problemy Telekommunikatsii 24 (1), 90–103 (2019).

Article  Google Scholar 

Yu. I. Efimova, E. V. Proshchenok, M. V. Romenskiy, and P. P. Unru, “Wireless UV-C-band optical communication,” Modern Science, No. 4-1, 445–450 (2021).

I. V. Semernik, O. V. Bender, A. A. Tarasenko, and K. V. Samonova, “Peculiarities of optical radiation propagation in marine environment to provide underwater wireless optical communications,” Tendentsii Razvitiya Nauki Obrazovaniya, No. 92-9, 110–116 (2022).

G. S. Vasiliev, O. R. Kuzichkin, D. I. Surzhik, and I. S. Konstantinov, “Scale physical modeling method of the UV-C band communication system,” Fundam. Prikl. Probl. Tekh. Tekhnol., No. 6, 141–147 (2020).

E. S. Abramova, V. F. Myshkin, V. A. Khan, S. F. Balandin, R. S. Eremeev, M. S. Pavlova, and D. M. Khorokhorin, “On the use of underwater bistatic optical communication systems,” T-COMM: Telekommunikatsii Transport 14 (8), 4–12 (2020).

Google Scholar 

E. S. Abramova, V. F. Myshkin, M. S. Pavlova, S. S. Abramov, and I. I. Pavlov, “Development of bistatic optical communication in Russia,” Elektrosvyaz, No. 10, 36–40 (2019).

Google Scholar 

B. V. Poller, A. V. Britvin, B. D. Borisov, Yu. D. Kolomnikov, S. I. Konyaev, A. E. Kusakina, N. A. Shergunova, V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, and V. F. Plyusnin, “Characterization of an energy information model and methods for constructing a telecommunication and satellite quantum cryptographic laser communication system,” Problemy informatiki, No. 1, 69–75 (2013).

A. V. Britvin, S. I. Konyaev, N. S. Nikitenko, A. V. Povazhaev, B. V. Poller, and Yu. I. Schetinin, “Methods of construction and experimental characteristics of ultraviolet atmospheric communication,” Uspekhi Sovremennoy Radioelektroniki, No. 1, 21–25 (2019).

Google Scholar 

留言 (0)

沒有登入
gif