Beyond traditional pharmacology: evaluating phosphodiesterase inhibitors in autism spectrum disorder

Lord C, Charman T, Havdahl A, Carbone P, Anagnostou E, Boyd B, et al. The Lancet Commission on the future of care and clinical research in autism. Lancet. 2022;399:271–334.

Article  PubMed  Google Scholar 

Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, et al. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharm. 2022;13:1057083.

Article  CAS  Google Scholar 

Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharm Rev. 2006;58:488–520.

Article  CAS  PubMed  Google Scholar 

Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry. 2021;26:4570–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hendouei F, Sanjari Moghaddam H, Mohammadi MR, Taslimi N, Rezaei F, Akhondzadeh S. Resveratrol as adjunctive therapy in treatment of irritability in children with autism: A double-blind and placebo-controlled randomized trial. J Clin Pharm Ther. 2020;45:324–34.

Article  CAS  PubMed  Google Scholar 

Ebrahimi P, Seyedmirzaei H, Moradi K, Bagheri S, Moeini M, Mohammadi MR, et al. Cilostazol as adjunctive therapy in treatment of children with autism spectrum disorders: a double-blind and placebo-controlled randomized trial. Int Clin Psychopharmacol. 2023;38:89–95.

Article  PubMed  Google Scholar 

Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE, Outterson AH, et al. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat Med. 2021;27:862–70.

Article  CAS  PubMed  Google Scholar 

Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59:367–74.

Article  CAS  PubMed  Google Scholar 

Chmielewski WX, Beste C. Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Prog Neurobiol. 2015;124:49–83.

Article  PubMed  Google Scholar 

Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D. Genotype to phenotype relationships in autism spectrum disorders. Nat Neurosci. 2014;18:191–8.

Article  PubMed  PubMed Central  Google Scholar 

Nickl-Jockschat T, Habel U, Maria Michel T, Manning J, Laird AR, Fox PT, et al. Brain structure anomalies in autism spectrum disorder-a meta-analysis of VBM studies using anatomic likelihood estimation. Hum Brain Mapp. 2012;33:1470–89.

Article  PubMed  Google Scholar 

Fuccillo MV. Striatal circuits as a common node for autism pathophysiology. Front Neurosci. 2016;10:159489.

Article  Google Scholar 

Cheng Y, Wang ZM, Tan W, Wang X, Li Y, Bai B, et al. Partial loss of psychiatric risk gene Mir137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat Neurosci. 2018;21:1689–703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

Article  PubMed  PubMed Central  Google Scholar 

Luhach K, Kulkarni GT, Singh VP, Sharma B. Vinpocetine amended prenatal valproic acid induced features of ASD possibly by altering markers of neuronal function, inflammation, and oxidative stress. Autism Res. 2021;14:2270–86.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif