Animal brains are probably the most complex computational machines on our planet, and like everything in biology, they are the product of evolution. Advances in developmental and palaeobiology have been expanding our general understanding of how nervous systems can change at a molecular and structural level. However, how these changes translate into altered function — that is, into ‘computation’ — remains comparatively sparsely explored. What, concretely, does it mean for neuronal computation when neurons change their morphology and connectivity, when new neurons appear or old ones disappear, or when transmitter systems are slowly modified over many generations? And how does evolution use these many possible knobs and dials to constantly tune computation to give rise to the amazing diversity in animal behaviours we see today? Addressing these major gaps of understanding benefits from choosing a suitable model system. Here, I present the vertebrate retina as one perhaps unusually promising candidate.
The retina is ancient and displays highly conserved core organisational principles across the entire vertebrate lineage, alongside a myriad of adjustments across extant species that were shaped by the history of their visual ecology. Moreover, the computational logic of the retina is readily interrogated experimentally, and our existing understanding of retinal circuits in a handful of species can serve as an anchor when exploring the visual circuit adaptations across the entire vertebrate tree of life, from fish deep in the aphotic zone of the oceans to eagles soaring high up in the sky.
Comments (0)