Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA: A Cancer J Clin. 2023;73(1):17–48.
National Cancer Institute. Cancer stat facts: female breast cancer 2022 [cited 2023 March 9]. Available from: https://seer.cancer.gov/statfacts/html/breast.html
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39.
••Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72. Validated correlation between pCR and better long-term outcomes in patients with breast cancer.
••Masuda N, Lee SJ, Ohtani S, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376(22):2147–59. Role of capecitabine in patients with residual disease and TNBC.
Article CAS PubMed Google Scholar
••von Minckwitz G, Huang CS, Mano MS, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–28. Initial findings of TDM1 in HER2+ breast cancer with residual disease.
••Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21. Role of pembrolizumab in patients with residual disease and TNBC.
Article CAS PubMed Google Scholar
Swain SM, Macharia H, Cortes J, et al. Event-free survival in patients with early HER2-positive breast cancer with a pathological complete response after HER2-targeted therapy: a pooled analysis. Cancers (Basel). 2022;14(20):5051.
Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.
•Pusztai L, Denkert C, O’Shaughnessy J, et al. Event-free survival by residual cancer burden after neoadjuvant pembrolizumab + chemotherapy versus placebo + chemotherapy for early TNBC exploratory analysis from KEYNOTE-522. J Clin Oncol. 2022;40(16_suppl):503–503. Reported use of RBC in early TNBC and how it can be used to predict long-term outcomes.
Yau C, Osdoit M, van der Noordaa M, et al. Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients. Lancet Oncol. 2022;23(1):149–60.
Article CAS PubMed Google Scholar
•Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386(6):556–67. Provided information about long-term outcomes for patients with TNBC treated with pembrolizumab.
Article CAS PubMed Google Scholar
Schmid P, Cortes J, Dent R, et al. Neoadjuvant pembrolizumab or placebo plus chemotherapy followed by adjuvant pembrolizumab or placebo for early-stage triple-negative breast cancer: updated event-free survival results from the phase 3 KEYNOTE-522 study. Presented at the San Antonio Breast Cancer Symposium, San Antonio, TX, December 2023.
•Blum JL, Flynn PJ, Yothers G, et al. Anthracyclines in early breast cancer: the ABC trials—USOR 06–090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 2017;35(23):2647–55. This analysis revealed which patients benefit from anthracycline-containing therapies.
Article CAS PubMed PubMed Central Google Scholar
••Mayer IA, Zhao F, Arteaga CL, et al. Randomized phase III postoperative trial of platinum-based chemotherapy versus capecitabine in patients with residual triple-negative breast cancer following neoadjuvant chemotherapy: ECOG-ACRIN EA1131. J Clin Oncol. 2021;39(23):2539–51. Provided additional information about the role of adjuvant capectiabine in TNBC.
Article CAS PubMed PubMed Central Google Scholar
Shah AN, Flaum L, Helenowski I, et al. Phase II study of pembrolizumab and capecitabine for triple negative and hormone receptor-positive, HER2-negative endocrine-refractory metastatic breast cancer. J Immunother Cancer. 2020;8(1):e000173.
•Lynce F, Mainor C, Geng X, et al. Abtract PD9–02: Peripheral immune subsets and circulating tumor DNA (ctDNA) in patients (pts) with residual triple negative breast cancer (TNBC) treated with adjuvant immunotherapy and/or chemotherapy (chemo): the OXEL study. Cancer Res. 2022;82(4_Supplement):PD9-02-PD9-02. ctDNA use in patients with residual disease after neoadjuvant chemotherapy for TNBC.
Breast Cancer Association Consortium, Dorling L, Carvalho S, et al. Breast cancer risk genes — association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428–39.
Robson M, Im S-A, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.
Article CAS PubMed Google Scholar
Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63.
Article CAS PubMed PubMed Central Google Scholar
••Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405. Role of adjuvant olaparib in TNBC.
Article CAS PubMed PubMed Central Google Scholar
Marmé F, Solbach C, Michel L, et al. Utility of the CPS + EG scoring system in triple-negative breast cancer treated with neoadjuvant chemotherapy. Eur J Cancer. 2021;153:203–12.
Domchek SM, Postel-Vinay S, Im SA, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155–64.
Article CAS PubMed Google Scholar
Wanderley CWS, Correa TS, Scaranti M, et al. Targeting PARP1 to enhance anticancer checkpoint immunotherapy response: rationale and clinical implications. Front Immunol. 2022;13:816642.
Article CAS PubMed PubMed Central Google Scholar
Fanucci KA, Pilat MJ, Shyr D, et al. Abstract CT145: Olaparib +/- atezolizumab in patients with BRCA-mutated (BRCAmt) locally advanced unresectable or metastatic (advanced) breast cancer an open-label, multicenter, randomized phase II trial. Cancer Res. 2023;83(8_Supplement):CT145.
Oza AM, Cibula D, Benzaquen AO, et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol. 2015;16(1):87–97.
Article CAS PubMed Google Scholar
van der Noll R, Ang JE, Jager A, et al. Phase I study of olaparib in combination with carboplatin and/or paclitaxel in patients with advanced solid tumors [abstract]. J Clin Oncol. 2013;31(15_suppl):Abstract 2579.
Geyer CE Jr, Garber JE, Gelber RD, et al. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann Oncol. 2022;33(12):1250–68.
Article CAS PubMed Google Scholar
Miller K, Tong Y, Jones DR, et al. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple negative breast cancer final efficacy results of Hoosier Oncology Group BRE09–146. J Clin Oncol. 2015;33(15_suppl):1082–1082.
Lynce F, Shimada K, Geng X, et al. Abstract CT142: TALAVE: Induction talazoparib (tala) followed by combined tala and avelumab in patients (pts) with advanced breast cancer (ABC). Cancer Res. 2023;83(8_Supplement):CT142.
Veneris JT, Matulonis UA, Liu JF, et al. Choosing wisely: selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol Oncol. 2020;156(2):488–97.
Article CAS PubMed Google Scholar
van der Voort A, van Ramshorst MS, van Werkhoven ED, et al. Three-year follow-up of neoadjuvant chemotherapy with or without anthracyclines in the presence of dual ERBB2 blockade in patients with ERBB2-positive breast cancer: a secondary analysis of the TRAIN-2 randomized, phase 3 trial. JAMA Oncol. 2021;7(7):978–84.
Schneeweiss A, Chia S, Hickish T, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol. 2013;24(9):2278–84.
Article CAS PubMed Google Scholar
Gianni L, Pienkowski T, Im YH, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32.
Article CAS PubMed Google Scholar
•Loibl S, Jassem J, Sonnenblick A, et al. VP6–2022: adjuvant pertuzumab and trastuzumab in patients with early HER-2 positive breast cancer in APHINITY 8.4 years’ follow-up. Ann Oncol. 2022;33(9):986–7. Long-term data about the role of pertuzumab in HER2-positive breast cancer.
Weiss A, Martínez-Sáez O, Waks AG, et al. Nodal positivity and systemic therapy among patients with clinical T1–T2N0 human epidermal growth factor receptor-positive breast cancer: results from two international cohorts. Cancer. 2023;129(12):1836–45.
Article CAS PubMed Google Scholar
••Loibl SMM, Untch M, Huang CS, et al. Phase III study of adjuvant ado-trastuzumab emtansine vs trastuzumab for residual invasive HER2-positive early breast cancer after neoadjuvant chemotherapy and HER2-targeted therapy: KATHERINE final IDFS and updated OS analysis. Presented at the San Antonio Breast Cancer Symposium, San Antonio, TX, December 2023. In this abstract, the authors presented long-term data of the KATHERINE trial showing that at 8 years of follow up, patients treated with TDM1 had better outcomes.
Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022;387(3):217–26.
Article CAS PubMed Google Scholar
Schlam I, Swain SM. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. NPJ Breast Cancer. 2021;7(1):56.
Article CAS PubMed PubMed Central Google Scholar
Barcenas CH, Hurvitz SA, Di Palma JA, et al. Improved tolerability of neratinib in patients with HER2-positive early-stage breast cancer: the CONTROL trial. Ann Oncol. 2020;31(9):1223–30.
Article CAS PubMed Google Scholar
Murthy RK, Loi S, Okines A, et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 2019;382(7):597–609.
Cortés J, Kim S-B, Chung W-P, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386(12):1143–54.
Comments (0)