Current Trends and Challenges of Microbiome Research in Prostate Cancer

•• Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and prostate cancer: a novel target for prevention and treatment. Int J Mol Sci. 2023;24:1511. https://doi.org/10.3390/ijms24021511. This paper provides a thorough overview of the role of the intraprostatic, urinary, and gut microbiome in the development/progression of prostate cancer.

Article  PubMed  PubMed Central  Google Scholar 

• Fujita K, Matsushita M, De Velasco MA, Hatano K, Minami T, Nonomura N, et al. The gut-prostate axis: a new perspective of prostate cancer biology through the gut microbiome. Cancers. 2023;15:1375. https://doi.org/10.3390/cancers15051375. This review describes the gut-prostate axis with role of dietary influences on gut microbiome.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Hsiao Y-C, Liu C-W, Yang Y, Feng J, Zhao H, Lu K. DNA damage and the gut microbiome: from mechanisms to disease outcomes. DNA. 2023;3:13–32. https://doi.org/10.3390/dna3010002.

Article  Google Scholar 

Xia B, Wang J, Zhang D, Hu X. The human microbiome links to prostate cancer risk and treatment (Review). Oncol Rep. 2023;49:1–12. https://doi.org/10.3892/or.2023.8560. This study discusses role of gut microbiome in prostate cancer and elaborates on direct and indirect mechanisms for cancer development.

Article  CAS  Google Scholar 

Ma J, Gnanasekar A, Lee A, Li WT, Haas M, Wang-Rodriguez J, et al. Influence of intratumor microbiome on clinical outcome and immune processes in prostate cancer. Cancers. 2020;12:2524. https://doi.org/10.3390/cancers12092524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stamey TA, Fair WR, Timothy MM, Chung HK. Antibacterial nature of prostatic fluid. Nature. 1968;218:444–7. https://doi.org/10.1038/218444a0.

Article  CAS  PubMed  Google Scholar 

Gatti G, Quintar AA, Andreani V, Nicola JP, Maldonado CA, Masini-Repiso AM, et al. Expression of Toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate. 2009;69:1387–97. https://doi.org/10.1002/pros.20984.

Article  CAS  PubMed  Google Scholar 

Cohen RJ, Shannon BA, McNEAL JE, Shannon T, Garrett KL. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol. 2005;173:1969–74. https://doi.org/10.1097/01.ju.0000158161.15277.78.

Article  PubMed  Google Scholar 

Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 2019;27:105–17. https://doi.org/10.1016/j.tim.2018.11.003.

Article  CAS  PubMed  Google Scholar 

Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate. 2008;68:306–20. https://doi.org/10.1002/pros.20680.

Article  CAS  PubMed  Google Scholar 

Yow MA, Tabrizi SN, Severi G, Bolton DM, Pedersen J, Giles GG, et al. Characterisation of microbial communities within aggressive prostate cancer tissues. Infect Agent Cancer. 2017;12:4. https://doi.org/10.1186/s13027-016-0112-7.

Article  PubMed  PubMed Central  Google Scholar 

Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Lucianò R, Ceresola ER, et al. The microbiome of the prostate tumor microenvironment. Eur Urol. 2017;72:625–31. https://doi.org/10.1016/j.eururo.2017.03.029.

Article  CAS  PubMed  Google Scholar 

Banerjee S, Alwine JC, Wei Z, Tian T, Shih N, Sperling C, et al. Microbiome signatures in prostate cancer. Carcinogenesis. 2019;40:749–64. https://doi.org/10.1093/carcin/bgz008.

Article  CAS  PubMed  Google Scholar 

Miyake M, Ohnishi K, Hori S, Nakano A, Nakano R, Yano H, et al. Mycoplasma genitalium infection and chronic inflammation in human prostate cancer: detection using prostatectomy and needle biopsy specimens. Cells. 2019;8:212. https://doi.org/10.3390/cells8030212.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Ramnarine VR, Bell R, Volik S, Davicioni E, Hayes VM, et al. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genomics. 2019;20:146. https://doi.org/10.1186/s12864-019-5457-z.

Article  PubMed  PubMed Central  Google Scholar 

• Tsydenova IA, Ibragimova MK, Tsyganov MM, Litviakov NV. Human papillomavirus and prostate cancer: systematic review and meta-analysis. Sci Rep. 2023;13:16597. https://doi.org/10.1038/s41598-023-43767-7. Meta-analysis of 27 case-control trials describing higher risk of prostate cancer compared to normal tissue or controls with BPH.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aragón IM, Herrera-Imbroda B, Queipo-Ortuño MI, Castillo E, Del Moral JS-G, Gómez-Millán J, et al. The urinary tract microbiome in health and disease. Eur Urol Focus. 2018;4:128–38. https://doi.org/10.1016/j.euf.2016.11.001.

Article  PubMed  Google Scholar 

de Vos WM, Tilg H, Hul MV, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71:1020–32. https://doi.org/10.1136/gutjnl-2021-326789.

Article  CAS  PubMed  Google Scholar 

Golombos DM, Ayangbesan A, O’Malley P, Lewicki P, Barlow L, Barbieri CE, et al. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective, pilot study. Urology. 2018;111:122–8. https://doi.org/10.1016/j.urology.2017.08.039.

Article  PubMed  Google Scholar 

Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018;21:539–48. https://doi.org/10.1038/s41391-018-0061-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol. 2018;74:575–82. https://doi.org/10.1016/j.eururo.2018.06.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Yang C, Zhang Z, Jiang H. Gut microbiota dysbiosis accelerates prostate cancer progression through increased LPCAT1 expression and enhanced DNA repair pathways. Front Oncol. 2021;11:679712. https://doi.org/10.3389/fonc.2021.679712.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pernigoni N, Zagato E, Calcinotto A, Troiani M, Mestre RP, Calì B, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science. 2021;374:216–24. https://doi.org/10.1126/science.abf8403.

Article  CAS  PubMed  Google Scholar 

Mathay C, Hamot G, Henry E, Georges L, Bellora C, Lebrun L, et al. Method optimization for fecal sample collection and fecal DNA extraction. Biopreservation Biobanking. 2015;13:79–93. https://doi.org/10.1089/bio.2014.0031.

Article  CAS  PubMed  Google Scholar 

Carroll IM, Ringel-Kulka T, Siddle JP, Klaenhammer TR, Ringel Y. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS ONE. 2012;7:e46953. https://doi.org/10.1371/journal.pone.0046953.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watson E-J, Giles J, Scherer BL, Blatchford P. Human faecal collection methods demonstrate a bias in microbiome composition by cell wall structure. Sci Rep. 2019;9:16831. https://doi.org/10.1038/s41598-019-53183-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baranzini SE. Insights into microbiome research 2: experimental design, sample collection, and shipment. Mult Scler Houndmills Basingstoke Engl. 2018;24:1419–20. https://doi.org/10.1177/1352458518788962.

Article  Google Scholar 

• Short MI, Hudson R, Besasie BD, Reveles KR, Shah DP, Nicholson S, et al. Comparison of rectal swab, glove tip, and participant-collected stool techniques for gut microbiome sampling. BMC Microbiol. 2021;21:26. https://doi.org/10.1186/s12866-020-02080-3. Microbiome methods study comparing stool collection techniques including validation of the glove tip collection technique.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol. 2007;73:7435–42. https://doi.org/10.1128/AEM.01143-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu W-K, Chen C-C, Panyod S, Chen R-A, Wu M-S, Sheen L-Y, et al. Optimization of fecal sample processing for microbiome study — the journey from bathroom to bench. J Formos Med Assoc. 2019;118:545–55. https://doi.org/10.1016/j.jfma.2018.02.005.

Article  PubMed  Google Scholar 

• Liang Y, Dong T, Chen M, He L, Wang T, Liu X, et al. Systematic analysis of impact of sampling regions and storage methods on fecal gut microbiome and metabolome profiles. MSphere. 2020;5:e00763-19. https://doi.org/10.1128/mSphere.00763-19. Study examining effects of stool sampling, homogenization and storage conditions.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Carrasco V, Soriano-Lerma A, Soriano M, Gutiérrez-Fernández J, Garcia-Salcedo JA. Urinary microbiome: yin and yang of the urinary tract. Front Cell Infect Microbiol. 2021; 11. https://doi.org/10.3389/fcimb.2021.617002

Wheeler KM, Liss MA. The microbiome and prostate cancer risk. Curr Urol Rep. 2019;20:66. https://doi.org/10.1007/s11934-019-0922-4.

Comments (0)

No login
gif