Kedar S, Ghate D, Corbett JJ. Visual fields in neuro-ophthalmology. Indian J Ophthalmol. 2011;59(2):103–9. https://doi.org/10.4103/0301-4738.77013.
Article PubMed PubMed Central Google Scholar
Schiefer U. Visual field defects-essentials for neurologists. J Neurol. 2003;250(4):407–11. https://doi.org/10.1007/s00415-003-1069-1.
Hickman SJ. Neurological visual field defects. Neuro-ophthalmology. 2011;35:242–50. https://doi.org/10.3109/01658107.2011.616980.
Heijl A, Patella VM, Bengtsson B. The field analyser primer: effective perimetry. Carl Zeiss Meditec, Inc; 2012.
Johnson LN, Baloh FG. The accuracy of confrontation visual field test in comparison with automated perimetry. J Natl Med Assoc. 1991;83(10):895–8.
CAS PubMed PubMed Central Google Scholar
Shahinfar S, Johnson LN, Madsen RW. Confrontation visual field loss as a function of decibel sensitivity loss on automated static perimetry. Implications on the accuracy of confrontation visual field testing. Ophthalmology. 1995;102(6):872–7. https://doi.org/10.1016/s0161-6420(95)30940-2.
Article CAS PubMed Google Scholar
Racette L, Fischer M, Bebie H, Hollo G, Johnson CA, Matsumoto C. Visual field digest – a guide to perimetry and the Octopus perimeter. 8th ed. Koniz, Switzerland: Haag-Streit AG; 2019.
Szatmáry G, Biousse V, Newman NJ. Can Swedish interactive thresholding algorithm fast perimetry be used as an alternative to Goldmann perimetry in neuro-ophthalmic practice? Arch Ophthalmol. 2002;120(9):1162–73. https://doi.org/10.1001/archopht.120.9.1162.
Ruia S, Tripathy K. Humphrey Visual Field. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK585112/ Accessed June 24, 2023.
Rowe FJ, Cheyne CP, García-Fiñana M, Noonan CP, Howard C, Smith J, Adeoye J. Detection of visual field loss in pituitary disease: peripheral kinetic versus central static. Neuroophthalmology. 2015;39(3):116–24. https://doi.org/10.3109/01658107.2014.990985.
Article PubMed PubMed Central Google Scholar
Wirtschafter JD, Hard-Boberg AL, Coffman SM. Evaluating the usefulness in neuro-ophthalmology of visual field examinations peripheral to 30 degrees. Trans Am Ophthalmol Soc. 1984;82:329–57.
CAS PubMed PubMed Central Google Scholar
• Hepworth LR, Rowe FJ. Programme choice for perimetry in neurological conditions (PoPiN): a systematic review of perimetry options and patterns of visual field loss. BMC Ophthalmol. 2018;18(1):241. https://doi.org/10.1186/s12886-018-0912-1. This review investigates the perimetry programs used in the evaluation of patients with idiopathic intracranial hypertension, optic neuropathy, chiasmal compression, and stroke
Article PubMed PubMed Central Google Scholar
Carl Zeiss Meditec, Inc. Humphrey® Field Analyzer 3 (HFA3) – Instructions for use; 2015. www.zeiss.co.uk/content/dam/Meditec/gb/Chris/techsupportsite/usermanuals/hfa3_instructions_for_use_1_1_software.pdf Accessed June 6, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT01003639, A multicenter, double-blind, randomized, placebo-controlled study of weight-reduction and/or low sodium diet plus acetazolamide vs diet plus placebo in subjects with idiopathic intracranial hypertension with mild visual loss. Updated December 12, 2018. https://www.clinicaltrials.gov/study/NCT01003639?id=NCT01003639&rank=1 Accessed July 3, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02124486, A randomised controlled trial of bariatric surgery versus a community weight loss programme for the sustained treatment of idiopathic intracranial hypertension: the IIH:WT Trial. Updated November 5, 2020. https://www.clinicaltrials.gov/study/NCT02124486?id=NCT02124486&rank=1&limit=10 Accessed July 3, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02652780, Randomized, double-masked, sham-controlled clinical trial to evaluate the efficacy of a single intravitreal injection of GS010 in subjects affected for more than 6 months and to 12 months by LHON due to the G11778A mutation in the ND4 Gene. Updated January 23, 2020. https://www.clinicaltrials.gov/study/NCT02652780?id=NCT02652780&rank=1&limit=10 Accessed July 3, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02652767, A randomized, double-masked, sham-controlled clinical trial to evaluate the efficacy of a single intravitreal injection of GS010 in subjects affected for 6 months or less by LHON due to the G11778A mutation in the mitochondrial ND4 gene. Updated July 29, 2022. https://www.clinicaltrials.gov/study/NCT02652767?id=NCT02652767&rank=1&limit=10 Accessed July 3, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02341560, A phase 2/3, randomized, double-masked, sham-controlled trial of QPI-1007 delivered by single or multi-dose intravitreal injection(s) to subjects with acute non-arteritic anterior ischemic optic neuropathy (NAION). Updated July 20, 2020. https://www.clinicaltrials.gov/study/NCT02341560?id=NCT02341560&rank=1&limit=10 Accessed July 3, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT03547206, A double-masked clinical study evaluating the efficacy and safety of RPh201 treatment in participants with previous NAION. Updated October 12, 2020. https://www.clinicaltrials.gov/study/NCT03547206?id=NCT03547206&rank=1&limit=10 Accessed July 3, 2023.
ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02513914, Operative procedures vs. endovascular neurosurgery for untreated pseudotumor trial (OPEN-UP). Updated January 19, 2023. https://www.clinicaltrials.gov/study/NCT02513914?id=NCT02513914&rank=1&limit=10 Accessed July 3, 2023.
Heijl A, Patella VM, Chong LX, Iwase A, Leung CK, Tuulonen A, Lee GC, Callan T, Bengtsson B. A new SITA perimetric threshold testing algorithm: construction and a multicenter clinical study. Am J Ophthalmol. 2019;198:154–65. https://doi.org/10.1016/j.ajo.2018.10.010.
• Yamane MLM, Odel JG. Introducing the 24-2C visual field test in neuro-ophthalmology. J Neuroophthalmol. 2021;41(4):e606–11. https://doi.org/10.1097/WNO.0000000000001157. This study compares the 24-2C program to 10-2 program in patients with neuro-ophthalmic conditions
Wall M, Brito CF, Woodward KR, Doyle CK, Kardon RH, Johnson CA. Total deviation probability plots for stimulus size V perimetry: a comparison with size III stimuli. Arch Ophthalmol. 2008;126(4):473–9. https://doi.org/10.1001/archopht.126.4.473.
Wall M, Lee EJ, Wanzek RJ, Zamba KD, Turpin A, Chong LX, Marin-Franch I. Threshold automated perimetry of the full visual field in patients with glaucoma with mild visual loss. J Glaucoma. 2019;28(11):997–1005. https://doi.org/10.1097/IJG.0000000000001372.
• Mejia-Vergara AJ, Sadun AA, Chen AF, Smith MF, Wall M, Karanjia R. Benefit of stimulus size V perimetry for patients with a dense central scotoma from Leber’s hereditary optic neuropathy. Transl Vis Sci Technol. 2021;10(12):31. https://doi.org/10.1167/tvst.10.12.31. This paper investigates the role of size V stimulus in automated static perimetry for the evaluation of patients with central scotomas due to Leber hereditary optic neuropathy
Article PubMed PubMed Central Google Scholar
Pineles SL, Volpe NJ, Miller-Ellis E, Galetta SL, Sankar PS, Shindler KS, Maguire MG. Automated combined kinetic and static perimetry: an alternative to standard perimetry in patients with neuro-ophthalmic disease and glaucoma. Arch Ophthalmol. 2006;124(3):363–9. https://doi.org/10.1001/archopht.124.3.363.
• Bevers C, Blanckaert G, Van Keer K, Fils JF, Vandewalle E, Stalmans I. Semi-automated kinetic perimetry: comparison of the Octopus 900 and Humphrey visual field analyzer 3 versus Goldmann perimetry. Acta Ophthalmol. 2019;97(4):e499–505. https://doi.org/10.1111/aos.13940. This paper compares two automated kinetic perimetry instruments with Goldmann manual kinetic perimetry
• Bhaskaran K, Phuljhele S, Kumar P, Saxena R, Angmo D, Sharma P. Comparative evaluation of Octopus semi-automated kinetic perimeter with Humphrey and Goldmann perimeters in neuro-ophthalmic disorders. Indian J Ophthalmol. 2021;69(4):918–22. https://doi.org/10.4103/ijo.IJO_1266_20. This study compares automated kinetic perimetry with Goldmann manual kinetic perimetry and static automated perimetry in neuro-ophthalmic disorders
Article PubMed PubMed Central Google Scholar
Ma MKI, Saha C, Poon SHL, Yiu RSW, Shih KC, Chan YK. Virtual reality and augmented reality - emerging screening and diagnostic techniques in ophthalmology: a systematic review. Surv Ophthalmol. 2022;67(5):1516–30. https://doi.org/10.1016/j.survophthal.2022.02.001.
Terracciano R, Mascolo A, Venturo L, Guidi F, Vaira M, Eandi CM, Demarchi D. Kinetic perimetry on virtual reality headset. IEEE Trans Biomed Circuits Syst. 2023;17(3):413–9. https://doi.org/10.1109/TBCAS.2023.3249045.
Heinzman Z, Linton E, Marín-Franch I, Turpin A, Alawa K, Wijayagunaratne A, Wall M. Validation of the Iowa head-mounted open-source perimeter. Transl Vis Sci Technol. 2023;12(9):19. https://doi.org/10.1167/tvst.12.9.19.
Article PubMed PubMed Central Google Scholar
Groth SL, Linton EF, Brown EN, Makadia F, Donahue SP. Evaluation of virtual reality perimetry and standard automated perimetry in normal children. Transl Vis Sci Technol. 2023;12(1):6. https://doi.org/10.1167/tvst.12.1.6.
Article PubMed PubMed Central Google Scholar
Wong KA, Ang BCH, Gunasekeran DV, Husain R, Boon J, Vikneson K, Tan ZPQ, Tan GSW, Wong TY, Agrawal R. Remote perimetry in a virtual reality metaverse environment for out-of-hospital functional eye screening compared against the gold standard Humphrey visual fields perimeter: proof-of-concept pilot study. J Med Internet Res. 2023;25:e45044. https://doi.org/10.2196/45044.
Article PubMed PubMed Central Google Scholar
• Odayappan A, Sivakumar P, Kotawala S, Raman R, Nachiappan S, Pachiyappan A, Venkatesh R. Comparison of a new head mount virtual reality perimeter (C3 Field Analyzer) with automated field analyzer in neuro-ophthalmic disorders. J Neuroophthalmol. 2023;43(2):232–6. https://doi.org/10.1097/WNO.0000000000001714. This research compares a virtual reality perimeter with static automated perimetry in patients with neuro-ophthalmic conditions
Wall M, Johnson CA. Principles and techniques of the examination of the visual sensory system. In: Miller NR, Newman NJ, Biousse V, Kerrison JB, editors. Walsh and Hoyt’s Clinical Neuro-Ophthalmology, vol. 1. 6th ed. Baltimore, Maryland: Williams & Wilkins; 2005. p. 83–149.
Pellegrini F, Cuna A, Cirone D, Ciabattoni C, Caruso E, Interlandi E, Zappacosta A. Clinical reasoning: Wilbrand’s knee, scotoma of Traquair, and normal tension glaucoma. Case Rep Neurol. 2022;14(2):341–7. https://doi.org/10.1159/000525799.
Article PubMed PubMed Central Google Scholar
Pellegrini F, Interlandi E, Marullo M, Cirone D, Cuna A. Idiopathic binasal hemianopia: case report and literature review. Eur J Ophthalmol. 2021;31(6):NP26–30. https://doi.org/10.1177/1120672120934983.
Kedar S, Zhang X, Lynn MJ, Newman NJ, Biousse V. Congruency in homonymous hemianopia. Am J Ophthalmol. 2007;143(5):772–80. https://doi.org/10.1016/j.ajo.2007.01.048.
Zhang X, Kedar S, Lynn MJ, Newman NJ, Biousse V. Homonymous hemianopias: clinical-anatomic correlations in 904 cases. Neurology. 2006;66(6):906–10. https://doi.org/10.1212/01.wnl.0000203913.12088.93.
Article CAS PubMed Google Scholar
Panesar H, Romanowski CA, Pepper IM, Hickman SJ. Bilateral homonymous hemianopia with sparing of the vertical meridian. Neuroophthalmology. 2011;35(1):7–11. https://doi.org/10.3109/01658107.2010.540733.
Article PubMed PubMed Central Google Scholar
Young JE, Al Othman B, Kini AT, Lee AG. Vertical meridian sparing homonym
Comments (0)