Quantity and diameter of dentinal tubules of human teeth and teeth of experimental animals according to scanning electron microscopy data

Aminoshariae, A., & Kulild, J. C. (2021). Current concepts of dentinal hypersensitivity. Journal of Endodontics, 47(11), 1696–1702.

Brännström, M., & Johnson, G. (1974). Effects of various conditioners and cleaning agents on prepared dentin surfaces: A scanning electron microscopic investigation. Journal of Prosthetic Dentistry, 31(4), 422–430.

Canali, G. D., Rached, R. N., Mazur, R. F., & Souza, E. M. (2017). Effect of erosion/abrasion challenge on the dentin tubule occlusion using different desensitizing agents. Brazilian Dental Journal, 28(2), 216–224.

Cummins, D. (2009). Dentin hypersensitivity: From diagnosis to a breakthrough therapy for everyday sensitivity relief. Journal of Clinical Dentistry, 20(1), 1–9.

Ding, Y. J., Yao, H., Wang, G. H., & Song, H. (2014). A randomized double-blind placebocontrolled study of the efficacy of Clinpro XT varnish and Gluma dentin desensitizer on dentin hypersensitivity. American Journal of Dentistry, 27, 79–83.

El-Banna, A., Elmesellawy, M. Y., & Elsayed, M. A. (2023). Flexural strength and microhardness of human radicular dentin sticks after conditioning with different endodontic chelating agents. Journal of Conservative Dentistry, 26(3), 344–348.

Fagrell, T. G., Lingström, P., Olsson, S., Steiniger, F., & Norén, J. G. (2008). Bacterial invasion of dentinal tubules beneath apparently intact but hypomineralized enamel in molar teeth with molar incisor hypomineralization. International Journal of Paediatric Dentistry, 18(5), 333–340.

Fromme, H. G., & Riedel, H. (1970). Messungen über die Weite der Dentinkanälchen an nichtentmineralisierten bleibenden Zähnen und Milchzähnen [Measurements of the width of the dentin tubules in non-demineralized permanent and deciduous teeth]. Deutsche Zahnarztliche Zeitschrift, 25(3), 401–405 (in German).

Gălbinaşu, B. M., Manolea, H. O., Matei, I., Andrei, M., & Nicolescu, M. I. (2021). A software approach for identifying the effect of dental caries on dentin-enamel junction. Romanian Journal of Morphology and Embryology, 62(1), 255–262.

Garberoglio, R., & Brännström, M. (1972). L'utilizzazione del microscopio elettronico a scansione nell'esame di alcuni tessuti del dente [Use of the scanning electron microscope in the study of dental tissues]. Mondo Odontostomatologico, 14(2), 233–251 (in Italian).

Garcés-Ortíz, M., Ledesma-Montes, C., & Reyes-Gasga, J. (2015). Scanning electron microscopic study on the fibrillar structures within dentinal tubules of human dentin. Journal of Endodontics, 41(9), 1510–1514.

Gianini, R. J., do Amaral, F. L., Flório, F. M., & Basting, R. T. (2010). Microtensile bond strength of etch-and-rinse and self-etch adhesive systems to demineralized dentin after the use of a papain-based chemomechanical method. American Journal of Dentistry, 23(1), 23–28.

Hernández, S. Z., Negro, V. B., Paulero, R. H., Toriggia, P. G., & Saccomanno, D. M. (2010). Scanning electron microscopy of pulp cavity dentin in dogs. Journal of Veterinary Dentistry, 27(1), 7–11.

Hoshyari, N., Zamanian, A., Samii, A., & Mousavi, J. (2023). In-vitro comparison of occluding effect of fluoride varnish and diode laser irradiation with fluoride varnish and Er,Cr:YSGG laser irradiation on dentinal tubules of the cervical root area of the tooth. Maedica (Bucur), 18(2), 257–265.

Joshi, P., Vijaykumar, A., Enkhmandakh, B., Mina, M., Shin, D. G., & Bayarsaihan, D. (2022). Genome-wide distribution of 5hmC in the dental pulp of mouse molars and incisors. Journal of Biochemistry, 171(1), 123–129.

Khalighinejad, N., Feiz, A., Faghihian, R., & Swift Jr., E. J. (2014). Effect of dentin conditioning on bond strength of fiber posts and dentin morphology: A review. American Journal of Dentistry, 27(1), 3–6.

Kranz, S., Heyder, M., Mueller, S., Guellmar, A., Krafft, C., Nietzsche, S., Tschirpke, C., Herold, V., Sigusch, B., & Reise, M. (2022). Remineralization of artificially demineralized human enamel and dentin samples by zinc-carbonate hydroxyapatite nanocrystals. Materials, 15(20), 7173.

Lenzi, T. L., Gimenez, T., Tedesco, T. K., Mendes, F. M., Rocha Rde, O., & Raggio, D. P. (2016). Adhesive systems for restoring primary teeth: A systematic review and meta-analysis of in vitro studies. International Journal of Pediatrics, 26(5), 364–375.

Li, Y., Ikeda, H., & Suda, H. (2013). Determination of the functional space for fluid movement in the rat dentinal tubules using fluorescent microsphere. Archives of Oral Biology, 58(7), 780–787.

Love, R. M., & Jenkinson, H. F. (2002). Invasion of dentinal tubules by oral bacteria. Critical Reviews in Oral Biology and Medicine, 13(2), 171–183.

Lysokon, Y., Bandrivsky, Y. L., & Luchynskyi, M. A. (2022). Analysis of the results of treatment of destructive forms of apical periodontitis with osteotropic drugs in a short term. Wiadomosci Lekarskie, 75(1), 228–231.

Machado, A. C., Rabelo, F. E. M., Maximiano, V., Lopes, R. M., Aranha, A. C. C., & Scaramucci, T. (2019). Effect of in-office desensitizers containing calcium and phosphate on dentin permeability and tubule occlusion. Journal of Dentistry, 86, 53–59.

Magloire, H., Maurin, J. C., Couble, M. L., Shibukawa, Y., Tsumura, M., Thivichon-Prince, B., & Bleicher, F. (2010). Dental pain and odontoblasts: Facts and hypotheses. Journal of Oral and Facial Pain and Headache, 24(4), 335–349.

Mahdee, A., Alhelal, A., Eastham, J., Whitworth, J., & Gillespie, J. I. (2016). Complex cellular responses to tooth wear in rodent molar. Archives of Oral Biology, 61, 106–114.

Mahmood Talabani, R., Taha Garib, B., & Masaeli, R. (2020). The response of the pulp-dentine complex, PDL, and bone to three calcium silicate-based cements: A histological study in an animal rat model. Bioinorganic Chemistry and Applications, 13, 9582165.

Midha, V., Midha V., Kochhar, A. S., Kochhar, G. K., Bhasin, R., & Dadlani, H. (2021). Evaluating the efficacy of desensitizing dentifrices on dentinal hypersensitivity management: A scanning electron microscopic analysis. Journal of Indian Society of Periodontology, 25(4), 283–287.

Olek, A., Klimek, L., & Bołtacz-Rzepkowska, E. (2020). Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth. Journal of Veterinary Science, 21(6), e83.

Pessoa, J. I., Guimarães, G. N., Viola, N. V., da Silva, W. J., de Souza, A. P., Tjäderhane, L., Line, S. R., & Marques, M. R. (2013). In situ study of the gelatinase activity in demineralized dentin from rat molar teeth. Acta Histochemica, 115(3), 245–251.

Reis, A. F., Giannini, M., Kavaguchi, A., Soares, C. J., & Line, S. R. (2004). Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. Journal of Adhesive Dentistry, 6(2), 117–121.

Riedel, H. (1970). Messungen über die Weite der Dentinkanälchen an Nichtentmineralisierten Bleibenden Zähnen und Milchzähnen [Measurements of the width of the dentin tubules in non-demineralized permanent and deciduous teeth]. Deutsche Zahnarztliche Zeitschrift, 25(3), 401–415 (in German).

Saydjari, Y., Kuypers, T., & Gutknecht, N. (2016). Laser application in dentistry: Irradiation effects of Nd:YAG 1064 nm and diode 810 nm and 980 nm in infected root canals – A literature overview. BioMed Research International, 2016, 8421656.

Seyedkavoosi, S., & Sevostianov, I. (2019). Multiscale micromechanical modeling of the elastic properties of dentin. Journal of the Mechanical Behavior of Biomedical Materials, 100, 103397.

Soares, F. Z., Follak, A., da Rosa, L. S., Montagner, A. F., Lenzi, T. L., & Rocha, R. O. (2016). Bovine tooth is a substitute for human tooth on bond strength studies: A systematic review and meta-analysis of in vitro studies. Dental Materials, 32(11), 1385–1393.

Soukup, J. W., Jeffery, J., Drizin, S. R., Hetzel, S. J., Stone, D., Eriten, M., Ploeg, H. L., & Henak, C. R. (2023). Correlation of mineral density and elastic modulus of dog dentin using μ-CT and nanoindentation. Journal of Biomechanics, 147, 111434.

Stähli, A., Schatt, A. S. J., Stoffel, M., Nietzsche, S., Sculean, A., Gruber, R., Cvikl, B., & Eick, S. (2021). Effect of scaling on the invasion of oral microorganisms into dentinal tubules including the response of pulpal cells-an in vitro study. Clinical Oral Investigations, 25(2), 769–777.

Susin, A. H., Alves, L. S., Melo, G. P., & Lenzi, T. L. (2008). Comparative scanning electron microscopic study of the effect of different dental conditioners on dentin micromorphology. Journal of Applied Oral Science, 16(2), 100–105.

Taschieri, S., Del Fabbro, M., Samaranayake, L., Chang, J. W., & Corbella, S. (2014). Microbial invasion of dentinal tubules: A literature review and a new perspective. Journal of Investigative and Clinical Dentistry, 5(3), 163–170.

Thomas, H. F., & Payne, R. C. (1983). The ultrastructure of dentinal tubules from erupted human premolar teeth. Journal of Dental Research, 62(5), 532–536.

Tunar, O. L., Gürsoy, H., Çakar, G., Kuru, B., Ipci, S. D., & Yılmaz, S. (2014). Evaluation of the effects of Er:YAG laser and desensitizing paste containing 8% arginine and calcium carbonate, and their combinations on human dentine tubules: A scanning electron microscopic analysis. Photomedicine and Laser Surgery, 32(10), 540–545.

Vieira, A. R. (2022). Progression of caries or erosive tooth wear lesions from the host standpoint. Monographs in Oral Science, 30, 122–127.

Zhang, X., Shi, C., Zhao, H., Zhou, Y., Hu, Y., Yan, G., Liu, C., Li D., Hao, X., Mishina, Y., Liu, Q., & Sun, H. (2019). Distinctive role of ACVR1 in dentin formation: Requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. Journal of Molecular Histology, 50(1), 43–61.

留言 (0)

沒有登入
gif