Mechanotransduction signaling pathways of erythrocytes associated with restructuring of cell metabolism

Ataullakhanov, F. I., & Vitvitsky, V. M. (2002). What determines the intracellular ATP concentration. Bioscience Reports, 22(5–6), 501–511.

Bunkin, N. F., Ninham, B. W., Ignatiev, P. S., Kozlov, V. A., Shkirin, A. V., & Starosvetskij, A. V. (2011). Long-living nano-bubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions. Journal Biophotonics, 4(3), 150–164.

Chen, C., Xie, T., Zhang, Y., Wang, Y., Yu, F., Lin, L., Zhang, W., Brown, B. C., Zhang, X., Kellems, R. E., D'Alessandro, A., & Xia, Y. (2023). Erythrocyte ENT1-AMPD3 axis is an essential purinergic hypoxia sensor and energy regulator combating CKD in a mouse model. Journal of the American Society of Nephrology, 34(10), 1647–1671.

Chen, J. F., Lee, C. F., & Chern, Y. (2014). Adenosine receptor neurobiology: Overview. International Review of Neurobiology, 119, 1–49.

Cilek, N., Ugurel, E., Goksel, E., & Yalcin, O. (2023). Signaling mechanisms in red blood cells: A view through the protein phosphorylation and deformability. Journal of Cellular Physiology, 2023, 30958.

D'Alessandro, A., & Xia, Y. (2020). Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia. Current Opinion in Hematology, 27(3), 155–162.

D'Alessandro, A., Anastasiadi, A. T., Tzounakas, V. L., Nemkov, T., Reisz, J. A., Kriebardis, A. G., Zimring, J. C., Spitalnik, S. L., & Busch, M. P. (2023). Red blood cell metabolism in vivo and in vitro. Metabolites, 13(7), 793–813.

Davis, P. R., Miller, S. G., Verhoeven, N. A., Morgan, J. S., Tulis, D. A., Witczak, C. A., & Brault, J. J. (2020). Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle. Metabolism: Clinical and Experimental, 108, 154257–154277.

Dengler, F. (2020). Activation of AMPK under hypoxia: Many roads leading to Rome. International Journal of Molecular Sciences, 21(7), 2428–2443.

Deryugina, A. V., Boyarinov, G. A., Simutis, I. S., Nikolskiy, V. O., Kuznetsov, A. B., & Efimova, T. S. (2018). Correction of meta-bolic indicators of erythrocytes and myocardium structure with ozonized red blood-cell. Cell and Tissue Biology, 12, 207–212.

Dotsenko, O. I., & Troshchynskaya, Y. A. (2014). Role of AMP catabolism enzymes in the energetic status of erythrocytes under conditions of glucose depletion. Biosystems Diversity, 22(1), 46–52 (in Russian).

Dotsenko, O. I., Konyukhova, N. R., & Troshchynskaya, Y. A. (2013). Reguljacija strukturnogo stanu bilkiv cytoskeletu erytrocytiv pry dii’ na nyh nyz’kochastotnoji vibraciji [Regulation of structural state of erythrocytes’ cytoskeleton proteins at low-frequency vibration action]. Visnyk Donec’kogo Nacional’nogo Universytetu, Pryrodnychi Nauky, 1, 149–156 (in Ukrainian).

Dotsenko, O. I., Taradina, G. V., & Mischenko, А. М. (2021). Peroxidase activity of erythrocytes hemoglobin under action of low-frequency vibration. Studia Biologica, 15(4), 3–16.

Ellsworth, M. L., Ellis, C. G., & Sprague, R. S. (2016). Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle. Acta Physiologica, 216(3), 265–276.

Ferguson, B. S., Neidert, L. E., Rogatzki, M. J., Lohse, K. R., Gladden, L. B., & Kluess, H. A. (2021). Red blood cell ATP release correlates with red blood cell hemolysis. American Journal of Physiology, Cell Physiology, 321(5), C761–C769.

Fujii, N., Jessen, N., & Goodyear, L. J. (2006). AMP-activated protein kinase and the regulation of glucose transport. American Journal of Physiology, Endocrinology and Metabolism, 291(5), E867–E877.

Gou, Z., Zhang, H., Abbasi, M., & Misbah, C. (2021). Red blood cells under flow show maximal ATP release for specific hematocrit. Biophysical Journal, 120(21), 4819–4831.

Grygorczyk, R., & Orlov, S. N. (2017). Effects of hypoxia on erythrocyte membrane properties-implications for intravascular hemolysis and purinergic control of blood flow. Frontiers in Physiology, 8, 1110.

Gudkov, S. V., Lyakhov, G. A., Pustovoy, V. I., & Shcherbakov, I. A. (2021). Vibration-vortex mechanism of radical-reaction activation in an aqueous solution: Physical analogies. Physics of Wave Phenomena, 29(2), 108–113.

Kirby, B. S., Sparks, M. A., Lazarowski, E. R., Lopez Domowicz, D. A., Zhu, H., & McMahon, T. J. (2021). Pannexin 1 channels control the hemodynamic response to hypoxia by regulating O2-sensitive extracellular ATP in blood. American Journal of Physiology, Heart and Circulatory Physiology, 320(3), H1055–H1065.

Leal Denis, M. F., Alvarez, H. A., Lauri, N., Alvarez, C. L., Chara, O., & Schwarzbaum, P. J. (2016). Dynamic regulation of cell volume and extracellular ATP of human erythrocytes. PloS One, 11(6), e0158305.

Lew, V. L. (2023). The circulatory dynamics of human red blood cell homeostasis: Oxy-deoxy and PIEZO1-triggered changes. Biophysical Journal, 122(3), 484–495.

Liu, H., Adebiyi, M., Liu, R. R., Song, A., Manalo, J., Wen, Y. E., Wen, A. Q., Weng, T., Ko, J., Idowu, M., Kellems, R. E., Eltzschig, H. K., Blackburn, M. R., Juneja, H. S., & Xia, Y. (2018). Elevated ecto-5'-nucleotidase: A missing pathogenic factor and new therapeutic target for sickle cell disease. Blood Advances, 2(15), 1957–1968.

Liu, H., Zhang, Y., Wu, H., D'Alessandro, A., Yegutkin, G. G., Song, A., Sun, K., Li, J., Cheng, N. Y., Huang, A., Edward Wen, Y., Weng, T. T., Luo, F., Nemkov, T., Sun, H., Kellems, R. E., Karmouty-Quintana, H., Hansen, K. C., Zhao, B., Subudhi, A. W., … Xia, Y. (2016). Beneficial role of erythrocyte adenosine A2B receptor-mediated AMP-activated protein kinase activation in high-altitude hypoxia. Circulation, 134(5), 405–421.

Locovei, S., Bao, L., & Dahl, G. (2006). Pannexin 1 in erythrocytes: Function without a gap. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7655–7659.

Lushchak, V. I., Husak, V. V., & Storey, K. B. (2008). Regulation of AMP-deaminase activity from white muscle of common carp Cyprinus carpio. Comparative Biochemistry and Physiology, Part B, Biochemistry and Molecular Biology, 149(2), 362–369.

Marginedas-Freixa, I., Alvarez, C. L., Moras, M., Leal Denis, M. F., Hattab, C., Halle, F., Bihel, F., Mouro-Chanteloup, I., Lefevre, S. D., Le Van Kim, C., Schwarzbaum, P. J., & Ostuni, M. A. (2018). Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Scientific Reports, 8(1), 11384–11397.

McMahon, T. J., Darrow, C. C., Hoehn, B. A., & Zhu, H. (2021). Generation and export of red blood cell ATP in health and disease. Frontiers in Physiology, 12, 754638–754640.

Misiti, F., Carelli-Alinovi, C., & Rodio, A. (2022). ATP release from erythrocytes: A role of adenosine. Clinical Hemorheology and Microcirculation, 80(2), 61–71.

Montalbetti, N., Leal Denis, M. F., Pignataro, O. P., Kobatake, E., Lazarowski, E. R., & Schwarzbaum, P. J. (2011). Homeostasis of extracellular ATP in human erythrocytes. The Journal of Biological Chemistry, 286(44), 38397–38407.

Oakhill, J. S., Scott, J. W., & Kemp, B. E. (2012). AMPK functions as an adenylate charge-regulated protein kinase. Trends in Endocrinology and Metabolism, 23(3), 125–132.

Peng, Z., Luo, R., Xie, T., Zhang, W., Liu, H., Wang, W., Tao, L., Kellems, R. E., & Xia, Y. (2019). Erythrocyte adenosine A2B receptor-mediated AMPK activation: A missing component counteracting CKD by promoting oxygen delivery. Journal of the American Society of Nephrology, 30(8), 1413–1424.

Qiang, Q., Manalo, J. M., Sun, H., Zhang, Y., Song, A., Wen, A. Q., Wen, Y. E., Chen, C., Liu, H., Cui, Y., Nemkov, T., Reisz, J. A., Edwards Iii, G., Perreira, F. A., Kellems, R. E., Soto, C., D'Alessandro, A., & Xia, Y. (2021). Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biology, 19(6), e3001239.

Racine, M. L., & Dinenno, F. A. (2019). Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans. The Journal of Physiology, 597(17), 4503–4519.

Rozhkovskij, I. V., & Kresiun, V. I. (1991). Aktivnost' markernykh fermentov i sostoianie lipidnogo matriksa membranéritrotsitov pri stresse i ego medikamenoznoj korrektsii [Activity of marker enzymes and status of the erythrocyte membrane lipid matrix in stress and during its correction using medications]. Ukrainskij Biokhimicheskij Zhurnal, 63(4), 74–80 (in Russian).

Schneider, E., Rissiek, A., Winzer, R., Puig, B., Rissiek, B., Haag, F., Mittrücker, H. W., Magnus, T., & Tolosa, E. (2019). Generation and function of non-cell-bound CD73 in inflammation. Frontiers in Immunology, 10, 1729–1737.

Song, A., Zhang, Y., Han, L., Yegutkin, G. G., Liu, H., Sun, K., D'Alessandro, A., Li, J., Karmouty-Quintana, H., Iriyama, T., Weng, T., Zhao, S., Wang, W., Wu, H., Nemkov, T., Subudhi, A. W., Jameson-Van Houten, S., Julian, C. G., Lovering, A. T., Hansen, K. C., … Xia, Y. (2017). Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 8, 14108–14121.

Sridharan, M., Bowles, E. A., Richards, J. P., Krantic, M., Davis, K. L., Dietrich, K. A., Stephenson, A. H., Ellsworth, M. L., & Sprague, R. S. (2012). Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel. American Journal of Physiology, Heart and Circulatory Physiology, 302(3), H553–H559.

Steinberg, G. R., & Carling, D. (2019). AMP-activated protein kinase: The current landscape for drug development. Nature Reviews, Drug Discovery, 18(7), 527–551.

Takahashi, M., Shirai, Y., & Sugawa, S. (2021). Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water. Langmuir, 37(16), 5005–5011.

Ugurel, E., Goksel, E., Cilek, N., Kaga, E., & Yalcin, O. (2022). Proteomic analysis of the role of the adenylyl cyclase-cAMP pathway in red blood cell mechanical responses. Cells, 11(7), 1250–1269.

Vaisey, G., Banerjee, P., North, A. J., Haselwandter, C. A., & MacKinnon, R. (2022). Piezo1 as a force-through-membrane sensor in red blood cells. eLife, 11, e82621.

Xu, Z., Dou, W., Wang, C., & Sun, Y. (2019). Stiffness and ATP recovery of stored red blood cells in serum. Microsystems and Nanoengineering, 5, 51–59.

Yeung, P. K., Kolathuru, S. S., Mohammadizadeh, S., Akhoundi, F., & Linderfield, B. (2018). Adenosine 5'-triphosphate metabolism in red blood cells as a potential biomarker for post-exercise hypotension and a drug target for cardiovascular protection. Metabolites, 8(2), 30–43.

Zhang, H., Shen, Z., Hogan, B., Barakat, A. I., & Misbah, C. (2018). ATP release by red blood cells under flow: Model and simulations. Biophysical Journal, 115(11), 2218–2229.

留言 (0)

沒有登入
gif