Development, Strategies, and Challenges for Tularemia Vaccine

Flora S (2020) Biological warfare agents: history and modern-day relevance. Handbook on biological warfare preparedness. Elsevier, Amsterdam, pp 1–11. https://doi.org/10.1016/B978-0-12-812026-2.00001-3

Chapter  Google Scholar 

Sunagar R et al (2016) Tularemia vaccine development: paralysis or progress? Vaccine (Auckl) 6:9–23. https://doi.org/10.2147/vdt.S85545

Article  CAS  PubMed  Google Scholar 

Oyston PC, Quarry JE (2005) Tularemia vaccine: past, present and future. Antonie Van Leeuwenhoek 87(4):277–281. https://doi.org/10.1016/B978-0-12-812026-2.00001-3

Article  PubMed  Google Scholar 

Maurin M et al (2024) Tularemia treatment: experimental and clinical data. Front Microbiol 14:1348323. https://doi.org/10.3389/fmicb.2023.1348323

Article  PubMed  PubMed Central  Google Scholar 

Maurin M, Gyuranecz M (2016) Tularaemia: clinical aspects in Europe. Lancet Infect Dis 16(1):113–124. https://doi.org/10.1016/S1473-3099(15)00355-2

Article  PubMed  Google Scholar 

Bröms JE, Sjöstedt A, Lavander M (2010) The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol 1:136. https://doi.org/10.3389/fmicb.2010.00136

Article  PubMed  PubMed Central  Google Scholar 

Hood AM (1977) Virulence factors of Francisella tularensis. Epidemiol Infect 79(1):47–60. https://doi.org/10.1017/s0022172400052840

Article  CAS  Google Scholar 

Freudenberger Catanzaro KC, Inzana TJ (2020) The Francisella tularensis polysaccharides: what is the real capsule? Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.00065-19

Article  PubMed  PubMed Central  Google Scholar 

Gunn JS, Ernst RK (2007) The structure and function of Francisella lipopolysaccharide. Ann N Y Acad Sci 1105(1):202–218. https://doi.org/10.1196/annals.1409.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barry EM, Cole LE, Santiago AE (2009) Vaccines against tularemia. Hum Vaccin 5(12):832–838. https://doi.org/10.4161/hv.10297

Article  CAS  PubMed  Google Scholar 

Fulop M, Manchee R, Titball R (1995) Role of lipopolysaccharide and a major outer membrane protein from Francisella tularensis in the induction of immunity against tularemia. Vaccine 13(13):1220–1225. https://doi.org/10.1016/0264-410x(95)00062-6

Article  CAS  PubMed  Google Scholar 

Sjöstedt A et al (1992) The 17 kDa lipoprotein and encoding gene of Francisella tularensis LVS are conserved in strains of Francisella tularensis. Microb Pathog 13(3):243–249. https://doi.org/10.1016/0882-4010(92)90025-j

Article  PubMed  Google Scholar 

Pavkova I et al (2021) Francisella tularensis outer membrane vesicles participate in the early phase of interaction with macrophages. Front Microbiol 12:748706. https://doi.org/10.3389/fmicb.2021.748706

Article  PubMed  PubMed Central  Google Scholar 

Holland IB, Schmitt L, Young J (2005) Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22(1–2):29–39. https://doi.org/10.1080/09687860500042013

Article  CAS  PubMed  Google Scholar 

Eicher T et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 109(15):5687–5692. https://doi.org/10.1073/pnas.1114944109

Article  PubMed  PubMed Central  Google Scholar 

Gil H et al (2006) Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A 103(34):12897–12902. https://doi.org/10.1073/pnas.0602582103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadzhaev K et al (2009) Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS ONE 4(5):e5463. https://doi.org/10.1371/journal.pone.0005463

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forslund AL et al (2010) The type IV pilin, PilA, is required for full virulence of Francisella tularensis subspecies tularensis. BMC Microbiol 10:227. https://doi.org/10.1186/1471-2180-10-227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clemens DL, Lee BY, Horwitz MA (2018) The Francisella type VI secretion system. Front Cell Infect Microbiol 8:121. https://doi.org/10.3389/fcimb.2018.00121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2015.0021

Article  PubMed  PubMed Central  Google Scholar 

Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24(1):51–62. https://doi.org/10.1016/j.tim.2015.10.005

Article  CAS  PubMed  Google Scholar 

Hood RD, Peterson SB, Mougous JD (2017) From Striking Out to Striking Gold: Discovering that Type VI Secretion Targets Bacteria. Cell Host Microbe 21(3):286–289. https://doi.org/10.1016/j.chom.2017.02.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Del Tordello E et al (2016) Type VI secretion system sheaths as nanoparticles for antigen display. Proc Natl Acad Sci U S A 113(11):3042–3047. https://doi.org/10.1073/pnas.1524290113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuccui J et al (2013) Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol 3(5):130002. https://doi.org/10.1098/rsob.130002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brodmann M et al (2017) Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat Commun 8:15853. https://doi.org/10.1038/ncomms15853

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludu JS et al (2008) The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 190(13):4584–4595. https://doi.org/10.1128/JB.00198-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramond E et al (2012) Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol 7(11):1255–1268. https://doi.org/10.2217/fmb.12.103

Article  CAS  PubMed  Google Scholar 

Wawszczak M, Banaszczak B, Rastawicki W (2022) Tularaemia—a diagnostic challenge. Ann Agric Environ Med 29(1):12–21. https://doi.org/10.26444/aaem/139242

Article  PubMed  Google Scholar 

Caspar Y, Maurin M (2017) Francisella tularensis susceptibility to antibiotics: a comprehensive review of the data obtained in VITRO and in animal models. Front Cell Infect Microbiol 7:122. https://doi.org/10.3389/fcimb.2017.00122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marohn ME, Barry EM (2013) Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 31(35):3485–3491. https://doi.org/10.1016/j.vaccine.2013.05.096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burke DS (1977) Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J Infect Dis 135(1):55–60. https://doi.org/10.1093/infdis/135.1.55

Article  CAS  PubMed  Google Scholar 

El Sahly HM et al (2009) Safety, reactogenicity and immunogenicity of Francisella tularensis live vaccine strain in humans. Vaccine 27(36):4905–4911. https://doi.org/10.1016/j.vaccine.2009.06.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu TH et al (2005) Intranasal vaccination induces protective immunity against intranasal infection with virulent Francisella tularensis biovar A. Infect Immun 73(5):2644–2654. https://doi.org/10.1128/iai.73.5.2644-2654.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wayne Conlan J et al (2005) Aerosol-, but not intradermal-immunization with the live vaccine strain of Francisella tularensis protects m

留言 (0)

沒有登入
gif