Role of Bismuth Doping on Structural and Electrical Properties of ZnO Nanocrystals Prepared by Sol–Gel Method

A. Boumezoued, K. Guergouri, R. Barille, D. Rechem, M. Zaabat, and M. Rasheed, ZnO nanopowders doped with bismuth oxide, from synthesis to electrical application. J. Alloys Compd. 791, 550–558 (2019).

Article  CAS  Google Scholar 

G. Thennarasu and A. Sivasamy, Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicol. Environ. Saf. 134, 412–420 (2016).

Article  CAS  PubMed  Google Scholar 

K. Jeyasubramanian, R.V. William, P. Thiruramanathan, G.S. Hikku, M. Vimal Kumar, B. Ashima, P. Veluswamy, and H. Ikeda, Dielectric and magnetic properties of nanoporous nickel doped zinc oxide for spintronic applications. J. Magn. Magn. Mater. 485, 27–35 (2019).

Article  CAS  Google Scholar 

S. Lee, B. Bierig, and D.C. Paine, Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors. Thin Solid Films 520, 3764–3768 (2012).

Article  CAS  Google Scholar 

S. Guidara, H. Féki, and Y. Abid, Impedance, AC conductivity and electric modulus analysis of l-leucine l-leucinium picrate. J. Alloys Compd. 663, 424 (2015).

Article  Google Scholar 

S. Dutta and A. Dodabalapur, Zinc tin oxide thin film transistor sensor. Sens. Actuators B Chem. 143, 50–55 (2009).

Article  Google Scholar 

Q. Huang, Y. Liu, S. Yang, Y. Zhao, and X. Zhang, Hydrogen mediated self-textured zinc oxide films for silicon thin film solar cells. Sol. Energy Mater. Sol. Cells 103, 134–139 (2012).

Article  CAS  Google Scholar 

J. Ungula and B.F. Dejene, Effect of solvent medium on the structural, morphological and optical properties of ZnO nanoparticles synthesized by the sol–gel method. Phys. B 480, 26–30 (2016).

Article  CAS  Google Scholar 

A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, and R.B. Pode, Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol. 24, 331–335 (2013).

Article  CAS  Google Scholar 

S.M. Saleh, A.M. Soliman, M.A. Sharaf, V. Kale, and B. Gadgil, Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J. Environ. Chem. Eng. 5, 1219–1226 (2017).

Article  CAS  Google Scholar 

R. Zamiri, A. Kaushal, A. Rebelo, and J.M.F. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40, 1635–1639 (2014).

Article  CAS  Google Scholar 

M. Arshad, A.S. Ahmed, A. Azam, and A.H. Naqvi, Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy. J. Alloys Compd. 577, 469–474 (2013).

Article  CAS  Google Scholar 

P. Dhak, D. Dhak, M. Das, K. Pramanik, and P. Pramanik, Impedance spectroscopy study of LaMnO3 modified BaTiO3 ceramics. Mater. Sci. Eng., B 164, 165–171 (2009).

Article  CAS  Google Scholar 

A. Dhara, S. Sain, S. Das, and S.K. Pradhan, Microstructure, optical, dielectric and electrical characterizations of Mn doped ZnO nanocrystals synthesized by mechanical alloying. Ceram. Int. 44, 7110–7121 (2018).

Article  CAS  Google Scholar 

S. Dhara and P.K. Giri, Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films 520, 5000–5006 (2012).

Article  CAS  Google Scholar 

Y. Ma, Q. Gao, G.G. Wu, W.C. Li, F.B. Gao, J.Z. Yin, B.L. Zhang, and G.T. Du, Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD. Mater. Res. Bull. 48, 1239–1243 (2013).

Article  CAS  Google Scholar 

R. Nasser, W.B.H. Othmen, and H. Elhouichet, Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 45, 8000–8007 (2019).

Article  CAS  Google Scholar 

T.A. Ahcene, C. Monty, J. Kouam, A. Thorel, G. Petot-Ervas, and A. Djemel, Preparation by solar physical vapor deposition (SPVD) and nanostructural study of pure and Bi doped ZnO nanopowders. J. Eur. Ceram. Soc. 27, 3413–3424 (2007).

Article  Google Scholar 

W. Tuichai, S. Danwittayakul, N. Chanlek, M. Takesada, A. Pengpad, P. Srepusharawoot, and P. Thongbai, High-performance giant dielectric properties of Cr3+/Ta5+ co-doped TiO2 ceramics. ACS Omega 6, 1901–1910 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Karthika and K. Ravichandran, Tuning the microstructural and magnetic properties of ZnO nanopowders through the simultaneous doping of Mn and Ni for biomedical applications. J. Mater. Sci. Technol. 31, 1111–1117 (2015).

Article  CAS  Google Scholar 

M. Ashaduzzman, M.K.R. Khan, A.M.M. Tanveer Karim, and M. Mozibur Rahman, Influence of chromium on structural, non-linear optical constants and transport properties of CdO thin films. Surf. Interfaces 12, 135–144 (2018).

Article  CAS  Google Scholar 

G. Vijayaprasath, R. Murugan, S. Asaithambi, G.A. Babu, P. Sakthivel, T. Mahalingam, Y. Hayakawa, and G. Ravi, Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles. Mater. Sci. Process. 122, 1–11 (2016).

Article  CAS  Google Scholar 

C. Belkhaoui, N. Mzabi, H. Smaoui, and P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 12, 1686–1696 (2019).

Article  Google Scholar 

J. Singh and R.C. Singh, Structural, optical, dielectric and transport properties of ball mill synthesized ZnO–V2O5 nano-composites. J. Mol. Struct. 1215, 128261–128261 (2020).

Article  CAS  Google Scholar 

A. Sathiya Priya, D. Geetha, and N. Kavitha, Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite. Vacuum 160, 453–460 (2019).

Article  CAS  Google Scholar 

A. Sathiya Priya, S. Banu, D. Geetha, and S. Lee, Investigations of the magnetic and dielectric behaviour of (Zr, Cu) co-doped BiFeO3–BaTiO3 composite. Mater. Res. Express 6, 106116–106116 (2019).

Article  Google Scholar 

M. Chaari and A. Matoussi, Effect of Sn2O3 doping on structural, optical and dielectric properties of ZnO ceramics. Mater. Sci. Eng., B 178, 1130–1139 (2013).

Article  CAS  Google Scholar 

B. Ullah, W. Lei, X. Song, X. Wang, and W. Lü, Perovskite structure and low frequency relaxor- like- dielectric response of (Sr, Ce)TiO3 solid solution. Ceram. Int. 43, 16376–16383 (2017).

Article  CAS  Google Scholar 

I. Jlassi, N. Sdiri, H. Elhouichet, and M. Férid, Raman and impedance spectroscopy methods of P2O5 –Li2O–Al2O3 glass system doped with MgO. J. Alloys Compd. 645, 125–130 (2015).

Article  CAS  Google Scholar 

S. Tian, D. Zeng, C. Xie, and X. Zhao, Direct experimental evidence for SbZn–2VZn complex as the important defect in the Sb-doped ZnO nanocrystals. Mater. Lett. 116, 363–366 (2014).

Article  CAS  Google Scholar 

N. Sdiri, H. Elhouichet, B. Azeza, and F. Mokhtar, Studies of (90–x) P2O5-xB2O3-10Fe2O3 glasses by Mossbauer effect and impedance spectroscopy methods. J. Non-Cryst. Solids 371–372, 22–27 (2013).

Article  Google Scholar 

S.H. Güler, Ö. Güler, E. Evin, and S. Islak, Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik 127, 3187–3191 (2016).

Article  Google Scholar 

A. Tabib, N. Sdiri, H. Elhouichet, and M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloys Compd. 622, 687–694 (2015).

Article  CAS  Google Scholar 

R. Nasser and H. Elhouichet, Production of acceptor complexes in sol–gel ZnO thin films by Sb doping. J. Lumin. 196, 11–19 (2018).

Article  CAS  Google Scholar 

S. Das, S. Das, and S. Sutradhar, Enhanced dielectric behavior and ac electrical response in Gd-Mn-ZnO nanoparticles. J. Alloys Compd. 726, 11–21 (2017).

Article  CAS  Google Scholar 

R. Saravanan, T. Prakash, V.K. Gupta, and A. Stephen, Tailoring the electrical and dielectric properties of ZnO nanorods by substitution. J. Mol. Liq. 193, 160–165 (2014).

Article  CAS  Google Scholar 

T. Prodromakis and C. Papavassiliou, Engineering the Maxwell–Wagner polarization effect. Appl. Surf. Sci. 255, 6989–6994 (2009).

Article  CAS  Google Scholar 

M. Mehedi Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, and A. Azam, Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles. Mater. Res. Bull. 47, 3952–3958 (2012).

Article  CAS  Google Scholar 

M. Ashokkumar and S. Muthukumaran, Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015).

Article  CAS  Google Scholar 

J.J. Beltrán, C.A. Barrero, and A. Punnoose, Identifying the sources of ferromagnetism in sol–gel synthesized Zn1−xCoxO (0≤x≤0.10) nanoparticles. J. Solid State Chem. 240, 30–42 (2016).

Article  Google Scholar 

T. Baha Ali, A. Ahmed, M. Naseem Siddique, and P. Tripathi, Enhanced dielectric properties of Fe-substituted TiO2 nanoparticles. Phys. B Condens. Matter 534, 1–4 (2018).

Article  Google Scholar 

M. Hassan, W. Khan, A. Azam, and A.Z. Naqvi, Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 21, 283–291 (2015).

Article  Google Scholar 

M. Ashokkumar and S. Muthukumaran, Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu. J. Magn. Magn. Mater. 374, 61–66 (2015).

A

留言 (0)

沒有登入
gif