Adaptive and Maladaptive Clonal Hematopoiesis in Telomere Biology Disorders

McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: the price of cellular immortality. J Clin Invest. 2019;129(9):3474–81.

Article  PubMed  PubMed Central  Google Scholar 

Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol. 1978;120(1):33–53.

Article  PubMed  CAS  Google Scholar 

Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell. 1985;43(2, Part 1):405–13.

Article  PubMed  CAS  Google Scholar 

Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–8.

Article  PubMed  CAS  Google Scholar 

O’Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–81.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res/DNAging. 1991;256(2):271–82.

Article  CAS  Google Scholar 

Greider CW. Telomerase is processive. Mol Cell Biol. 1991;11(9):4572–80.

PubMed  PubMed Central  CAS  Google Scholar 

Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.

Article  PubMed  CAS  Google Scholar 

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25(3):585–621.

Article  PubMed  CAS  Google Scholar 

van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46.

Article  PubMed  PubMed Central  Google Scholar 

Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8.

Article  PubMed  CAS  Google Scholar 

Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet. 2000;26(4):447–50.

Article  PubMed  CAS  Google Scholar 

Gravekamp C, Chandra D. Aging and cancer vaccines. Crit Rev Oncog. 2013;18(6):585–95.

Article  PubMed  PubMed Central  Google Scholar 

Vulliamy TJ, Knight SW, Mason PJ, Dokal I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol Dis. 2001;27(2):353–7.

Article  PubMed  CAS  Google Scholar 

Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016;13(8):696–706.

Article  PubMed  Google Scholar 

Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med. 2010;12(12):753–64.

Article  PubMed  Google Scholar 

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309.

Article  PubMed  CAS  Google Scholar 

Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007;356(13):1317–26.

Article  PubMed  CAS  Google Scholar 

Feurstein S, Adegunsoye A, Mojsilovic D, Vij R, West DePersia AH, Rajagopal PS, et al. Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv. 2020;4(19):4873–86.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mangaonkar AA, Patnaik MM. Short telomere syndromes in clinical practice: bridging bench and bedside. Mayo Clin Proc. 2018;93(7):904–16.

Article  PubMed  Google Scholar 

Alter BP, Rosenberg PS, Giri N, Baerlocher GM, Lansdorp PM, Savage SA. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica. 2012;97(3):353–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blanche PA, Neelam G, Sharon AS, Philip SR. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30–9.

Article  Google Scholar 

Schratz KE, Haley L, Danoff SK, Blackford AL, DeZern AE, Gocke CD, et al. Cancer spectrum and outcomes in the Mendelian short telomere syndromes. Blood. 2020;135(22):1946–56. Description of the clinical outcomes of the TBD cohort assembled at Johns Hopkins. First report indicating that TBD patients present with increased CH and a different mutational signature compared to ARCH.

Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30–9. Description of the clinical outcomes of the TBD cohort assembled by the NIH describing higher risk to develop MN and specific characteristics of these patients.

Schratz KE, Armanios M. Cancer and myeloid clonal evolution in the short telomere syndromes. Curr Opin Genet Dev. 2020;60:112–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019;366(6465):eaan4673.

Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022;606(7913):335–42.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022;606(7913):343–50.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kusne Y, Xie Z, Patnaik MM. Clonal hematopoiesis: molecular and clinical implications. Leuk Res. 2022;113:106787.

Article  PubMed  CAS  Google Scholar 

Gregory JJ Jr, Wagner JE, Verlander PC, Levran O, Batish SD, Eide CR, et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci USA. 2001;98(5):2532–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Myers KC, Furutani E, Weller E, Siegele B, Galvin A, Arsenault V, et al. Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematol. 2020;7(3):e238–46.

Article  PubMed  Google Scholar 

Gutierrez-Rodrigues F, Groarke EM, Clé DV, Patel BA, Donaires FS, Spitofsky N, et al. Clonal hematopoiesis in telomere biology disorders associates with the underlying germline defect and somatic mutations in POT1, PPM1D, and TERT promoter. Blood. 2021;138(Supplement 1):1111-. Description in more detail of the somatic mutational landscape observed in the larger number of TBD patients to date. Possible association between specific somatic events and germline mutations.

Ferrer A, Mangaonkar AA, Patnaik MM. Clonal hematopoiesis and myeloid neoplasms in the context of telomere biology disorders. Curr Hematol Malig Rep. 2022;17(3):61–8.

Article  PubMed  PubMed Central  Google Scholar 

Pritzl SL, Gurney M, Badar T, Ferrer A, Lasho T, Finke C, et al. Clinical and molecular spectrum and prognostic outcomes of U2AF1 mutant clonal hematopoiesis- a prospective mayo clinic cohort study. Leuk Res. 2023;125:107007.

Article  PubMed  CAS  Google Scholar 

Schratz KE, Gaysinskaya V, Cosner ZL, DeBoy EA, Xiang Z, Kasch-Semenza L, et al. Somatic reversion impacts myelodysplastic syndromes and acute myeloid leukemia evolution in the short telomere disorders. J Clin Invest. 2021;131(18). Study of genetic rescue in the development of MDS/AML in TBD patients.

Maryoung L, Yue Y, Young A, Newton CA, Barba C, van Oers NS, et al. Somatic mutations in telomerase promoter counterbalance germline loss-of-function mutations. J Clin Invest. 2017;127(3):982–6.

Article  PubMed  PubMed Central  Google Scholar 

Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet. 2023;24(2):86–108.

Article  PubMed  CAS  Google Scholar 

Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91(21):9857–60.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Human Genet. 2009;85(6):823–32.

Article  CAS  Google Scholar 

d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8.

Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003;13(17):1549–56.

Article  PubMed  CAS  Google Scholar 

Jacobs JJ, de Lange T. Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol. 2004;14(24):2302–8.

Article  PubMed 

留言 (0)

沒有登入
gif