Vinken K, Van den Bergh G, Vermaercke B, Op de Beeck HP. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex. Cereb Cortex. 2016;26(7):3310–22.
Article PubMed PubMed Central Google Scholar
Zoccolan D. Invariant visual object recognition and shape processing in rats. Behav Brain Res. 2015;285:10–33.
Article PubMed PubMed Central Google Scholar
De Keyser R, Bossens C, Kubilius J, Op de Beeck HP. Cue-invariant shape recognition in rats as tested with secondorder contours. J Vis. 2015;15(15):14–14.
Djurdjevic V, Ansuini A, Bertolini D, Macke JH, Zoccolan D. Accuracy of Rats in Discriminating Visual Objects Is Explained by the Complexity of Their Perceptual Strategy. Curr Biol. 2018;28(7):1005-1015.e5.
Article CAS PubMed PubMed Central Google Scholar
Tafazoli S, et al. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex. Elife. 2017;6:1–39.
Samonds JM, Lieberman S, Priebe NJ. Motion discrimination and the motion aftereffect in mouse vision. eNeuro. 2018;5(6).
Caramellino R, Piasini E, Buccellato A, Carboncino A, Balasubramanian V, Zoccolan D. Rat sensitivity to multipoint statistics is predicted by efficient coding of natural scenes. Elife. 2021;10.
Wiesenfeld Z, Kornel EE. Receptive fields of single cells in the visual cortex of the hooded rat. Brain Res. 1975;94(3):401–12.
Article CAS PubMed Google Scholar
Girman SV, Sauvé Y, Lund RD. Receptive Field Properties of Single Neurons in Rat Primary Visual Cortex. J Neurophysiol. 1999;82(1):301–11.
Article CAS PubMed Google Scholar
Muir DR, Roth MM, Helmchen F, Kampa BM. Model-based analysis of pattern motion processing in mouse primary visual cortex. Front Neural Circuits. 2015;9:38.
Matteucci G, Bellacosa Marotti R, Riggi M, Rosselli FB, Zoccolan D. Nonlinear processing of shape information in rat lateral extrastriate cortex. J Neurosci. 2019;39(9):1938–18.
Vermaercke B, Gerich FJ, Ytebrouck E, Arckens L, Op de Beeck HP, Van den Bergh G. Functional specialization in rat occipital and temporal visual cortex. J Neurophysiol. 2014;112(8):1963–83.
Article PubMed PubMed Central Google Scholar
Marques T, et al. A Role for Mouse Primary Visual Cortex in Motion Perception. Curr Biol. 2018;28(11):1703-1713.e6.
Article CAS PubMed PubMed Central Google Scholar
Petruno SK, Clark RE, Reinagel P. Evidence That Primary Visual Cortex Is Required for Image, Orientation, and Motion Discrimination by Rats. PLoS ONE. 2013;8(2): e56543.
Article ADS CAS PubMed PubMed Central Google Scholar
Palagina G, Meyer JF, Smirnakis SM. Complex visual motion representation in mouse area V1. J Neurosci. 2017;37(1):164–83.
Article CAS PubMed PubMed Central Google Scholar
Juavinett AL, Callaway EM. Pattern and Component Motion Responses in Mouse Visual Cortical Areas. Curr Biol. 2015;25(13):1759–64.
Article CAS PubMed PubMed Central Google Scholar
Douglas RM, Neve A, Quittenbaum JP, Alam NM, Prusky GT. Perception of visual motion coherence by rats and mice. Vision Res. 2006;46(18):2842–7.
Article CAS PubMed Google Scholar
Stirman JN, Townsend LB, Smith SL. A touchscreen based global motion perception task for mice. Vision Res. 2016;127:74–83.
Article PubMed PubMed Central Google Scholar
Matteucci G, Zattera B, Bellacosa Marotti R, Zoccolan D. Rats spontaneously perceive global motion direction of drifting plaids. PLOS Comput Biol. 2021;17(9):e1009415.
Zilles K, Wree A, Schleicher A, Divac I. The monocular and binocular subfields of the rat’s primary visual cortex: A quantitative morphological approach. J Comp Neurol. 1984;226(3):391–402.
Article CAS PubMed Google Scholar
Kuo M-C, Dringenberg HC. Comparison of long-term potentiation (LTP) in the medial (monocular) and lateral (binocular) rat primary visual cortex. Brain Res. 2012;1488:51–9.
Article CAS PubMed Google Scholar
Griffen TC, Haley MS, Fontanini A, Maffei A. Rapid plasticity of visually evoked responses in rat monocular visual cortex. PLoS ONE. 2017;12(9):1–12.
Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local Origin of Field Potentials in Visual Cortex. Neuron. 2009;61(1):35–41.
Article CAS PubMed PubMed Central Google Scholar
Logothetis NK, Pauis J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of thebasis of the fMRI signal. Nature. 2001;412(6843):150–7.
Article ADS CAS PubMed Google Scholar
Liu J, Newsome WT. Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations. J Neurosci. 2006;26(30):7779–90.
Article CAS PubMed PubMed Central Google Scholar
Khawaja FA, Tsui JMG, Pack CC. Pattern Motion Selectivity of Spiking Outputs and Local Field Potentials in Macaque Visual Cortex. J Neurosci. 2009;29(43):13702–9.
Article CAS PubMed PubMed Central Google Scholar
Cui Y, Liu LD, Khawaja FA, Pack CC, Butts DA. Diverse Suppressive Influences in Area MT and Selectivity to Complex Motion Features. J Neurosci. 2013;33(42):16715–28.
Article CAS PubMed PubMed Central Google Scholar
Field KJ, White WJ, Lang CM. Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim. 1993;27(3):258–69.
Article CAS PubMed Google Scholar
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates Sixth Edition by. Acad Press. 2006;170.
Campisi P, Rocca DL. Brain waves for automatic biometric-based user recognition. IEEE Trans Inf Forensics Secur. 2014;9(5):782–800.
Kisley MA, Cornwell ZM. Gamma and beta neural activity evoked during a sensory gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation. Clin Neurophysiol. 2006;117(11):2549–63.
Article PubMed PubMed Central Google Scholar
Rey HG, Fried I, Quian Quiroga R. Timing of single-neuron and local field potential responses in the human medial temporal lobe. Curr Biol. 2014;24(3):299–4.
Article CAS PubMed PubMed Central Google Scholar
Ktonas PY, Papp N. Instantaneous envelope and phase extraction from real signals: Theory, implementation, and an application to EEG analysis. Signal Process. 1980;2(4):373–85.
Massey FJ. The Kolmogorov-Smirnov Test for Goodness of Fit. J Am Stat Assoc. 1951;46(253):68–78.
Fulop SA, Fitz K. Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. J Acoust Soc Am. 2006;119(1):360–71.
Article ADS PubMed Google Scholar
Phinyomark A, Thongpanja S, Hu H, Phukpattaranont P, Limsakul C. The Usefulness of Mean and Median Frequencies in Electromyography Analysis, in Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, InTech. 2012
Taghizadeh-Sarabi M, Daliri MR, Niksirat KS. Decoding Objects of Basic Categories from Electroencephalographic Signals Using Wavelet Transform and Support Vector Machines. Brain Topogr. 2014;28(1):33–46.
Hutter M, Zaffalon M. Distribution of mutual information from complete and incomplete data. Comput Stat Data Anal. 2005;48(3):633–57.
Article MathSciNet Google Scholar
Maling N, McIntyre C. Local Field Potential Analysis for Closed-Loop Neuromodulation. In Closed Loop Neurosci. Elsevier Inc. 2016;67–8.
Xu W, Huang X, Takagaki K, Wu J. Compression and Reflection of Visually Evoked Cortical Waves. Neuron. 2007;55(1):119–29.
Article PubMed PubMed Central Google Scholar
Ray S, Maunsell JHR. Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci Elsevier Ltd. 2015;19(2):78–8.
Hu L, Hu Q, Chen Y. Orientation and Distance Dependence of Pairwise Correlation in Macaque V1. In ACM Int Conf Proc Series. 2020;43–5.
Deitch D, Rubin A, Ziv Y. Representational drift in the mouse visual cortex. Curr Biol. 2021;31(19):4327-4339.e6.
Article CAS PubMed Google Scholar
Andrei AR, Akil AE, Kharas N, Rosenbaum R, Josić K, Dragoi V. Rapid compensatory plasticity revealed by dynamic correlated activity in monkeys in vivo. Nat Neurosci. 2023;26(11):1960–9.
Article CAS PubMed Google Scholar
Gutnisky DA, Beaman CB, Lew SE, Dragoi V. Spontaneous fluctuations in visual cortical responses influence population coding accuracy. Cereb Cortex. 2017;27(2):1409–27.
Comments (0)