Go Green in Neuroradiology: towards reducing the environmental impact of its practice

Health Care Without Harm. Healthcare climate footprint report. 2019. https://noharmglobal.org/documents/health-care-climate-footprint-report. Accessed 6 Apr 2023 

Eckelman MJ, Sherman J (2016) Environmental impacts of the U.S. health care system and effects on public health. PLOS ONE 11:e0157014

Article  PubMed  PubMed Central  Google Scholar 

Picano E, Mangia C, D’Andrea AJ (2022) Climate change, carbon dioxide emissions, and medical imaging contribution. J Clin Med 12:215

Article  PubMed  PubMed Central  Google Scholar 

Lojo-Lendoiro S, Rovira À, Morales Santos Á (2023) Green Radiology: how to develop sustainable radiology. Radiología (Engl Ed). https://doi.org/10.1016/j.rx.2023.06.007.Articleinpress

Article  PubMed  Google Scholar 

European Commission. Buying green! A handbook on environmental public procurement. European Commission. Luxembourg; Ed Publications Office of the European Union: 2016. Consulted: 25–05–2023 Available: Buying-Green-Handbook-3rd-Edition.pdf (europa.eu)

European Commission. EU GPP criteria for electrical and electronic equipment used in the health care sector. Luxemburgo; Ed Publicacions Office of the European Union: 2014. Consulted: 25–05–2023 Available: https://ec.europa.eu/environment/gpp/pdf/criteria/health/EN.pdf

Public Services and Procurement Canada. Green Procurement Plan—Part A: Checklist. Ed PSPC CA: 2019. Consulted: 25–05–2023 Available: https://www.tpsgc-pwgsc.gc.ca/app-acq/ae-gp/npaea-ngppa-eng.html

Liu B, Tong L, Liu Y, Guo Z (2022) Maintenance and management technology of medical imaging equipment based on deep learning. Contrast Media Mol Imaging 1:1–9

Google Scholar 

European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry (COCIR), Japan Industries Association of Radiological Systems (JIRA), Medical Imaging & Technology Alliance United States (MITA. Green Paper on Good Refurbishment practice for medical imaging equipment. 12 April 2018. Consulted: 21–03–2023 Available:https://www.cocir.org/fileadmin/6.1_Initiatives_Refurbishment/Good_Refurbishment_Practice_V2.pdf

European Union. Council Directive 2013/59/EURATOM, of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJEU no. 13, of January 17, 2014, pages 1 to 73.

World Health Organization. Guidelines for health care equipment donations. Genève; Ed WHO: March 2000. Consulted: 21–03–2023 Available: https://apps.who.int/iris/bitstream/handle/10665/70806/WHO_ARA_97.3_eng.pdf?sequence=1&isAllowed=y

Eckelman MJ, Huang K, Lagasse R, Senay E, Dubrow R, Sherman JD (2020) Health care pollution and public health damage in the United States: an update. Health Aff (Millwood) 39:2071–2079

Article  PubMed  Google Scholar 

Marwick TH, Buonocore J (2011) Environmental impact of cardiac imaging tests for the diagnosis of coronary artery disease. Heart 97:1128–1131

Article  PubMed  Google Scholar 

Martin M, Mohnke A, Lewis GM, Dunnick NR, Keoleian G, Maturen KE (2018) Environmental impacts of abdominal imaging: a pilot investigation. J Am Coll Radiol 15:1385–1393

Article  PubMed  Google Scholar 

Martin MF, Maturen KE (2020) On green radiology. Acad Radiol 27:1601–1602

Article  PubMed  Google Scholar 

Heye T, Knoerl R, Wehrle T et al (2020) The energy consumption of radiology: energy- and cost-saving opportunities for CT and MRI operation. Radiology 295:593–605

Article  PubMed  Google Scholar 

Vosshenrich J, Breit HC, Bach M, Merkle EM (2022) Economic aspects of low-field magnetic resonance imaging : acquisition, installation, and maintenance costs of 0.55 T systems. Radiologe 62:400–404

Article  PubMed  PubMed Central  Google Scholar 

Arnold TC, Freeman CW, Litt B, Stein JM (2023) Low-field MRI: clinical promise and challenges. J Magn Reson Imaging 57:25–44

Article  PubMed  Google Scholar 

Heiss R, Nagel AM, Laun FB, Uder M, Bickelhaupt S (2021) Low-field magnetic resonance imaging: a new generation of breakthrough technology in clinical imaging. Invest Radiol 56:726–733

Article  PubMed  Google Scholar 

Woolen SA, Kim CJ, Hernandez AM et al (2023) Radiology environmental impact: what is known and how can we improve? Acad Radiol 30:625–630

Article  PubMed  Google Scholar 

Hainc N, Brantner P, Zaehringer C, Hohmann J (2020) “Green fingerprint” project: evaluation of the power consumption of reporting stations in a radiology department. Acad Radiol 27:1594–1600

Article  PubMed  Google Scholar 

Woolen SA, Becker AE, Martin AJ et al (2023) Ecodesign and operational strategies to reduce the carbon footprint of MRI for energy cost savings. Radiology 307:e230441

Article  PubMed  Google Scholar 

https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria. Accessed 6 Apr 2023

D’Alessandro D, Tedesco P, Rebecchi A, Capolongo S (2016) Water use and water saving in Italian hospitals. A preliminary investigation. Ann Ist Super Sanita 52:56–62

PubMed  Google Scholar 

Health Technical Memorandum 07–04: Water management and water efficiency—best practice advice for the healthcare sector (https://www.england.nhs.uk/publication/water-management-and-water-efficiency-htm-07-04/ ). Accessed 6 Apr 2023

Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA (2018) Waste heat recovery technologies and applications. Therm Sci Eng Prog 6:268–289

Article  Google Scholar 

Hidalgo-Tobon SS (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson Part A 36A:223–242

Article  Google Scholar 

Stall NM, Kagoma YK, Bondy JN, Naudie D (2013) Surgical waste audit of 5 total knee arthroplasties. Can J Surg 56:97–102

Article  PubMed  PubMed Central  Google Scholar 

Hutchins DCJ, White SM (2009) Coming round to recycling. BMJ 338:b609

Article  PubMed  Google Scholar 

Sumner C, Ikuta I, Garg T et al (2023) Approaches to greening radiology. Acad Radiol 30:528–535

Article  PubMed  Google Scholar 

Chawla A, Chinchure D, Marchinkow LO, Munk PL, Peh WCG (2017) Greening the radiology department: not a big mountain to climb. CARJ 68:234–236

PubMed  Google Scholar 

Brown M, Schoen JH, Gross J, Omary RA, Hanneman K (2023) Climate change and radiology: impetus for change and a toolkit for action. Radiology 307:e230229

Article  PubMed  Google Scholar 

Thomas A (2012) Medical imaging: why helium prevails. In: Nuttall WJ, Clarke RH, Glowacki BA (eds) The future of helium as a natural resource. Routledge, London, UK

Google Scholar 

Nuttall WJ, Clarke RH, Glowacki BA (2012) Resources: stop squandering helium. Nature 485:573–575

Article  ADS  CAS  PubMed  Google Scholar 

Mohr S, Ward J (2014) Helium production and possible projection. Minerals 4:130–144

Article  ADS  Google Scholar 

Brünjes R, Hofmann T (2020) Anthropogenic gadolinium in freshwater and drinking water systems. Water Res 182:115966

Article  PubMed  PubMed Central  Google Scholar 

Dekker HM, Stroomberg GJ, Prokop M (2022) Tackling the increasing contamination of the water supply by iodinated contrast media. Insights Imaging 13:30

Article  PubMed  PubMed Central  Google Scholar 

Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46:1536–1545

Article  ADS  CAS  PubMed  Google Scholar 

Sengar A, Vijayanandan A (2021) Comprehensive review on iodinated X-ray contrast media: complete fate, occurrence, and formation of disinfection byproducts. Sci Total Environ 769:144846

Article  ADS  CAS  PubMed  Google Scholar 

Jomaah R, Barrat JA, Tripier R et al (2023) Iodine footprint: moving towards environmental responsibility. J Neuroradiol 50:1–2

Article  PubMed  Google Scholar 

Moller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von JC (2000) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69–70:409–414

Article  Google Scholar 

Verplanck PL, Taylor HE, Nordstrom DK, Barber LB (2005) Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek. Colorado Environ Sci Technol 39:6923–6929

Article  ADS  CAS  PubMed  Google Scholar 

Kulaksız S, Bau M (2007) Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet Sci Lett 260:361–371

Article  ADS  Google Scholar 

Pereto C, Lerat-Hardy A, Baudrimont M, Coynel A (2023) European fluxes of medical gadolinium to the ocean: a model based on healthcare databases. Envir International 173:107868

Article  CAS  Google Scholar 

Chazot A, Barrat J-A, Gaha M, Jomaah R, Ognard J, Ben SD (2020) Brain MRI make up the bulk of the gadolinium footprint in medical imaging. J Neuroradiol 47:259–265

Article  PubMed  Google Scholar 

Balzer T. (2017) Presence of gadolinium (Gd) in the brain and body. Presentation to the Medical Imaging Drugs Advisory Committee, FDA. Silver Spring, MD: U.S. Food and Drug Administration.

Rovira A, Doniselli FM, Auger C et al (2023) Use of gadolinium‑based contrast agents in multiple sclerosis: a review by the ESMRMB‑GREC and ESNR Multiple Sclerosis Working Group. Eur Radiol. https://doi.org/10.1007/s00330-023-10151-y

Mallio CA, Radbruch A, Deike-Hofmann K et al (2023) Artificial Intelligence to reduce or eliminate the need for gadolinium-based contrast agent in brain and cardiac MRI: a literature review. Invest Radiol 58:746–753

Bendszus M, Roberts D, Kolumban B et al (2020) Dose finding study of gadopiclenol, a new macrocyclic contrast agent, in MRI of central nervous system. Invest Radiol 55:129–137

Article  CAS  PubMed  Google Scholar 

Loevner LA, Kolumban B, Hutoczki G et al (2023) Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial. Invest Radiol 58:307–313

Article  CAS  PubMed 

留言 (0)

沒有登入
gif