Comparison of ureteral stone measurements for predicting the efficacy of a single session of extracorporeal shockwave lithotripsy: one-, two-, and three-dimensional computed tomography measurements

Raheem OA, Khandwala YS, Sur RL, Ghani KR, Denstedt JD (2017) Burden of urolithiasis: trends in prevalence, treatments, and costs. Eur Urol Focus 3(1):18–26

Article  PubMed  Google Scholar 

Ganesan V, Loftus CJ, Hinck B, Greene DJ, Nyame YA, Sivalingam S, Monga M (2016) Clinical predictors of 30-day emergency department revisits for patients with ureteral stones. J Urol 196(5):1467–1470

Article  PubMed  Google Scholar 

Fulgham PF, Assimos DG, Pearle MS, Preminger GM (2013) Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. J Urol 189(4):1203–1213

Article  PubMed  Google Scholar 

Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69(3):468–474

Article  PubMed  Google Scholar 

Nestler T, Haneder S, Große Hokamp N (2019) Modern imaging techniques in urinary stone disease. Curr Opin Urol 29(2):81–88

Article  PubMed  Google Scholar 

Young MJ, Pang KH, Elmussarah M, Hughes PF, Browning AJ, Symons SJ (2022) Acute extracorporeal shockwave lithotripsy for ureteric stones - 7-years’ experience from a busy district general hospital. BJU Int 130(5):655–661

Article  PubMed  Google Scholar 

Chakit M, Aqira A, El Hessni A, Mesfioui A (2023) Place of extracorporeal shockwave lithotripsy in the treatment of urolithiasis in the region of Gharb Chrarda Bni Hssen (Morocco). Urolithiasis 51(1):33. https://doi.org/10.1007/s00240-023-01481-z

Article  PubMed  Google Scholar 

Dauw CA, Swarna K, Qi J, Kim T, Leavitt D, Leese J, Abdelhady M, Witzke K, Hollingsworth JM, Ghani KR (2020) Shockwave lithotripsy use in the state of Michigan: American urological association guideline adherence and clinical implications. Urology 137(3):38–44

Article  PubMed  Google Scholar 

Garg M, Johnson H, Lee SM, Rai BP, Somani B, Philip J (2023) Role of hounsfield unit in predicting outcomes of shock wave lithotripsy for renal calculi: outcomes of a systematic review. Curr Urol Rep 24(4):173–185

Article  PubMed  PubMed Central  Google Scholar 

Guler Y (2023) Noncontrast computed tomography-based factors in predicting ESWL success: a systematic review and meta-analysis. Prog Urol 33(1):27–47

Article  PubMed  Google Scholar 

Oktay C, Corapli M, Tutus A (2022) The usefulness of the Hounsfield unit and stone heterogeneity variation in predicting the shockwave lithotripsy outcome. Diagn Interv Radiol 28(3):187–192

Article  PubMed  PubMed Central  Google Scholar 

Wagenius M, Oddason K, Utter M, Popiolek M, Forsvall A, Lundström KJ, Linder A (2022) Factors influencing stone-free rate of extracorporeal shock wave lithotripsy (ESWL); a cohort study. Scand J Urol 56(3):237–243

Article  PubMed  Google Scholar 

Abdelhamid M, Mosharafa AA, Ibrahim H, Selim HM, Hamed M, Elghoneimy MN, Salem HK, Abdelazim MS, Badawy H (2016) A prospective evaluation of high-resolution CT parameters in predicting extracorporeal shockwave lithotripsy success for upper urinary tract calculi. J Endourol 30(11):1227–1232

Article  PubMed  Google Scholar 

Berkovitz N, Simanovsky N, Katz R, Salama S, Hiller N (2010) Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification. Eur Radiol 20(5):1047–1051

Article  PubMed  Google Scholar 

Tailly T, Nadeau BR, Violette PD, Bao Y, Amann J, Nott L, Denstedt JD, Razvi H (2020) Stone burden measurement by 3D reconstruction on noncontrast computed tomography is not a more accurate predictor of stone-free rate after percutaneous nephrolithotomy than 2D stone burden measurements. J Endourol 34(5):550–557

Article  PubMed  Google Scholar 

Hyams ES, Bruhn A, Lipkin M, Shah O (2010) Heterogeneity in the reporting of disease characteristics and treatment outcomes in studies evaluating treatments for nephrolithiasis. J Endourol 24(9):1411–1444

Article  PubMed  Google Scholar 

Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY (2009) Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 103(4):524–528

Article  PubMed  Google Scholar 

Kobayashi M, Waseda Y, Fuse H, Takazawa R (2022) Variables measured on three-dimensional computed tomography are preferred for predicting the outcomes of shock wave lithotripsy. World J Urol 40(2):569–575

Article  PubMed  Google Scholar 

Ziemba JB, Li P, Gurnani R, Kawamoto S, Fishman E, Fung G, Ludwig WW, Stoianovici D, Matlaga BR (2018) A user-friendly application to automate CT renal stone measurement. J Endourol 32(8):685–691

Article  PubMed  Google Scholar 

Argüelles Salido E, Aguilar García J, Lozano-Blasco JM, Subirá Rios J, Beardo Villar P, Campoy-Martínez P, Medina-López RA (2013) Lithiasis size estimation variability depending on image technical methodology. Urolithiasis 41(6):517–522

Article  PubMed  Google Scholar 

Kawahara T, Miyamoto H, Ito H, Terao H, Kakizoe M, Kato Y, Ishiguro H, Uemura H, Yao M, Matsuzaki J (2016) Predicting the mineral composition of ureteral stone using noncontrast computed tomography. Urolithiasis 44(3):231–239

Article  CAS  PubMed  Google Scholar 

Nazim SM, Ather MH, Khan N (2014) Measurement of ureteric stone diameter in different planes on multidetector computed tomography–impact on the clinical decision making. Urology 83(2):288–292

Article  PubMed  Google Scholar 

Nadler RB, Stern JA, Kimm S, Hoff F, Rademaker AW (2004) Coronal imaging to assess urinary tract stone size. J Urol 172(3):962–964

Article  PubMed  Google Scholar 

Eisner BH, Kambadakone A, Monga M, Anderson JK, Thoreson AA, Lee H, Dretler SP, Sahani DV (2009) Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol 181(4):1710–1715

Article  PubMed  Google Scholar 

Ouzaid I, Al-qahtani S, Dominique S, Hupertan V, Fernandez P, Hermieu JF, Delmas V, Ravery V (2012) A 970 Hounsfield units (HU) threshold of kidney stone density on noncontrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int 110(11):E438-442

PubMed  Google Scholar 

Atalay HA, Canat L, Bayraktarli R, Alkan I, Can O, Altunrende F (2018) Evaluation of stone volume distribution in renal collecting system as a predictor of stone-free rate after percutaneous nephrolithotomy: a retrospective single-center study. Urolithiasis 46(3):303–309

Article  PubMed  Google Scholar 

Patel SR, Stanton P, Zelinski N, Borman EJ, Pozniak MA, Nakada SY, Pickhardt PJ (2011) Automated renal stone volume measurement by noncontrast computerized tomography is more reproducible than manual linear size measurement. J Urol 186(6):2275–2279

Article  PubMed  Google Scholar 

Babajide R, Lembrikova K, Ziemba J, Ding J, Li Y, Fermin AS, Fan Y, Tasian GE (2022) Automated machine learning segmentation and measurement of urinary stones on CT scan. Urology 169(11):41–46

Article  PubMed  Google Scholar 

Bell JR, Posielski NM, Penniston KL, Lubner MG, Nakada SY, Pickhardt PJ (2018) Automated computer software compared with manual measurements for CT-based urinary stone metrics: an evaluation study. J Endourol 32(5):455–461

Article  PubMed  Google Scholar 

Yamashita S, Kohjimoto Y, Iwahashi Y, Iguchi T, Iba A, Nishizawa S, Hara I (2019) Three-dimensional mean stone density measurement is superior for predicting extracorporeal shock wave lithotripsy success. Int J Urol 26(2):185–191

Article  PubMed  Google Scholar 

Rassweiler J, Lutz K, Gumpinger R, Eisenberger F (1986) Efficacy of in situ extracorporeal shock wave lithotripsy for upper ureteral calculi. Eur Urol 12(6):377–386

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif