Aspergillus and the Lung

CC BY-NC-ND 4.0 · Semin Respir Crit Care Med 2024; 45(01): 003-020
DOI: 10.1055/s-0043-1777259

Iris Janssens

1   Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

2   Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium

3   VIB Center for Inflammation Research, Ghent, Belgium

,

Bart N. Lambrecht

1   Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

2   Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium

3   VIB Center for Inflammation Research, Ghent, Belgium

4   Department of Pulmonary Medicine, ErasmusMC; Rotterdam, The Netherlands

,

Eva Van Braeckel

1   Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium

2   Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium

› Author Affiliations Funding I.J., B.N.L., and E.V.B. receive funding from an EOS consortium grant (G0H1222N) and the Forton Fund and Belgian Cystic Fibrosis Association through the King Baudouin Foundation.
  SFX Search  Permissions and Reprints Abstract

The filamentous fungus Aspergillus causes a wide spectrum of diseases in the human lung, with Aspergillus fumigatus being the most pathogenic and allergenic subspecies. The broad range of clinical syndromes that can develop from the presence of Aspergillus in the respiratory tract is determined by the interaction between host and pathogen. In this review, an oversight of the different clinical entities of pulmonary aspergillosis is given, categorized by their main pathophysiological mechanisms. The underlying immune processes are discussed, and the main clinical, radiological, biochemical, microbiological, and histopathological findings are summarized.

Keywords Aspergillus - Aspergillus fumigatus - immunology - pathophysiology Publication History

Article published online:
29 January 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
References 1 Patterson TF. Aspergillus Species. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier; 2019 2 Griffiths JS, Camilli G, Kotowicz NK, Ho J, Richardson JP, Naglik JR. Role for IL-1 family cytokines in fungal infections. Front Microbiol 2021; 12: 633047 3 Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax 2015; 70 (03) 270-277 4 Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med 2012; 4 (165) 165rv13 5 Ainsworth GC. Introduction to the History of Mycology. Cambridge University Press;; 1976 6 Balajee SA, Houbraken J, Verweij PE. et al. Aspergillus species identification in the clinical setting. Stud Mycol 2007; 59: 39-46 7 Index Fungorum [Database on the Internet]. Index Fungorum Partnership. Accessed September 11, 2023 at: Https://Www.Indexfungorum.Org. 2023 8 Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ. Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 2014; 5 (02) a019786-a019786 9 Tekaia F, Latgé JP. Aspergillus fumigatus: saprophyte or pathogen?. Curr Opin Microbiol 2005; 8 (04) 385-392 10 Pini G, Faggi E, Donato R, Sacco C, Fanci R. Invasive pulmonary aspergillosis in neutropenic patients and the influence of hospital renovation. Mycoses 2008; 51 (02) 117-122 11 Abdel Hameed AA, Yasser IH, Khoder IM. Indoor air quality during renovation actions: a case study. J Environ Monit 2004; 6 (09) 740-744 12 Abad A, Fernández-Molina JV, Bikandi J. et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010; 27 (04) 155-182 13 Park SJ, Mehrad B. Innate immunity to Aspergillus species. Clin Microbiol Rev 2009; 22 (04) 535-551 14 Sutton DA, Fothergill AW, Rinaldi MG. Guide to Clinically Significant Fungi. 1st ed. Williams & Wilkins; 1998 15 Gugnani HC. Ecology and taxonomy of pathogenic aspergilli. Front Biosci 2003; 8: s346-s357 16 Agarwal R, Sehgal IS, Dhooria S. et al. Allergic bronchopulmonary aspergillosis. Indian J Med Res 2020; 151 (06) 529-549 17 Carrion SdeJ, Leal Jr SM, Ghannoum MA, Aimanianda V, Latgé JP, Pearlman E. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol 2013; 191 (05) 2581-2588 18 van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 2017; 15 (11) 661-674 19 Beauvais A, Latgé JP. Aspergillus biofilm in vitro and in vivo. Microbiol Spectr 2015;3(04): 20 de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001; 65 (04) 497-522 21 Moore MM. The crucial role of iron uptake in Aspergillus fumigatus virulence. Curr Opin Microbiol 2013; 16 (06) 692-699 22 Moreno MA, Ibrahim-Granet O, Vicentefranqueira R. et al. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol Microbiol 2007; 64 (05) 1182-1197 23 Rautemaa-Richardson R, Richardson MD. Systemic fungal infections. Medicine (Baltimore) 2021; 49 (12) 760-765 24 Romani L. Immunity to fungal infections. Nat Rev Immunol 2011; 11 (04) 275-288 25 Garlanda C, Hirsch E, Bozza S. et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002; 420 (6912) 182-186 26 Cunha C, Aversa F, Lacerda JF. et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med 2014; 370 (05) 421-432 27 Idol RA, Bhattacharya S, Huang G. et al. Neutrophil and macrophage NADPH oxidase 2 differentially control responses to inflammation and to Aspergillus fumigatus in mice. J Immunol 2022; 209 (10) 1960-1972 28 Röhm M, Grimm MJ, D'Auria AC, Almyroudis NG, Segal BH, Urban CF. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis. Infect Immun 2014; 82 (05) 1766-1777 29 Branzk N, Lubojemska A, Hardison SE. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 2014; 15 (11) 1017-1025 30 Gazendam RP, van Hamme JL, Tool ATJ. et al. Human neutrophils use different mechanisms to kill aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J Immunol 2016; 196 (03) 1272-1283 31 McCormick A, Heesemann L, Wagener J. et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 2010; 12 (12-13): 928-936 32 Block H, Zarbock A. A fragile balance: does neutrophil extracellular trap formation drive pulmonary disease progression?. Cells 2021; 10 (08) 1932 33 Cenci E, Perito S, Enssle KH. et al. Th1 and Th2 cytokines in mice with invasive aspergillosis. Infect Immun 1997; 65 (02) 564-570 34 Knutsen AP. Lymphocytes in allergic bronchopulmonary aspergillosis. Front Biosci 2003; 8 (04) d589-d602 35 Moretti S, Renga G, Oikonomou V. et al. A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun 2017; 8: 14017 36 Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of respiratory viral and fungal coinfections. Clin Microbiol Rev 2022; 35 (01) e0009421 37 Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 2008; 8 (11) 889-895 38 Patterson TF, Thompson III GR, Denning DW. et al. Practice guidelines for the diagnosis and management of Aspergillosis: 2016 update by the infectious diseases Society of America. Clin Infect Dis 2016; 63 (04) e1-e60 39 Segal BH. Aspergillosis. N Engl J Med 2009; 360 (18) 1870-1884 40 Colombo AL, de Almeida Júnior JN, Slavin MA, Chen SCA, Sorrell TC. Candida and invasive mould diseases in non-neutropenic critically ill patients and patients with haematological cancer. Lancet Infect Dis 2017; 17 (11) e344-e356 41 Herbrecht R, Denning DW, Patterson TF. et al. Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002; 347 (06) 408-415 42 Uyeki TM, Bernstein HH, Bradley JS. et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68 (06) 895-902 43 Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 2001; 32 (03) 358-366 44 Gerson SL, Talbot GH, Hurwitz S, Strom BL, Lusk EJ, Cassileth PA. Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med 1984; 100 (03) 345-351 45 Hope WW, Walsh TJ, Denning DW. The invasive and saprophytic syndromes due to Aspergillus spp. Med Mycol 2005; 43 (Suppl. 01) S207-S238 46 Kauffman CA, Freifeld AG, Andes DR. et al. Endemic fungal infections in solid organ and hematopoietic cell transplant recipients enrolled in the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis 2014; 16 (02) 213-224 47 Schauwvlieghe AFAD, Rijnders BJA, Philips N. et al; Dutch-Belgian Mycosis study group. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med 2018; 6 (10) 782-792 48 van Arkel ALE, Rijpstra TA, Belderbos HNA, van Wijngaarden P, Verweij PE, Bentvelsen RG. COVID-19-associated pulmonary aspergillosis. Am J Respir Crit Care Med 2020; 202 (01) 132-135 49 White PL, Dhillon R, Cordey A. et al. A national strategy to diagnose coronavirus disease 2019-associated invasive fungal disease in the intensive care unit. Clin Infect Dis 2021; 73 (07) e1634-e1644 50 Dewi IM, Janssen NA, Rosati D. et al. Invasive pulmonary aspergillosis associated with viral pneumonitis. Curr Opin Microbiol 2021; 62: 21-27 51 Balz K, Trassl L, Härtel V, Nelson PP, Skevaki C, Virus-Induced T. Virus-induced T cell-mediated heterologous immunity and vaccine development. Front Immunol 2020; 11: 513 52 Krenke R, Grabczak EM. Tracheobronchial manifestations of Aspergillus infections. ScientificWorldJournal 2011; 11: 2310-2329 53 Nishiyama KH, Falcão Ede AA, Kay FU, Teles GBS, Bernardi FdelC, Funari Mde G. Acute tracheobronchitis caused by Aspergillus: case report and imaging findings. Radiol Bras 2014; 47 (05) 317-319 54 Samanta P, Clancy CJ, Nguyen MH. Fungal infections in lung transplantation. J Thorac Dis 2021; 13 (11) 6695-6707 55 Kemper CA, Hostetler JS, Follansbee SE. et al. Ulcerative and plaque-like tracheobronchitis due to infection with Aspergillus in patients with AIDS. Clin Infect Dis 1993; 17 (03) 344-352 d 56 Singh N, Husain S. Aspergillus infections after lung transplantation: clinical differences in type of transplant and implications for management. J Heart Lung Transplant 2003; 22 (03) 258-266 57 Denning DW. Commentary: unusual manifestations of aspergillosis. Thorax 1995; 50 (07) 812-813 58 Kramer MR, Denning DW, Marshall SE. et al. Ulcerative tracheobronchitis after lung transplantation. A new form of invasive aspergillosis. Am Rev Respir Dis 1991; 144 (3 Pt 1): 552-556 59 Denning DW, Cadranel J, Beigelman-Aubry C. et al; European Society for Clinical Microbiology and Infectious Diseases and European Respiratory Society. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J 2016; 47 (01) 45-68 60 Denning DW, Pleuvry A, Cole DC. Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis. Bull World Health Organ 2011; 89 (12) 864-872 61 Laursen CB, Davidsen JR, Van Acker L. et al. CPAnet Registry—An International Chronic Pulmonary Aspergillosis Registry. J Fungi (Basel) 2020; 6 (03) 96 62 Salzer HJF, Heyckendorf J, Kalsdorf B, Rolling T, Lange C. Characterization of patients with chronic pulmonary aspergillosis according to the new ESCMID/ERS/ECMM and IDSA guidelines. Mycoses 2017; 60 (02) 136-142 63 Denning DW, Riniotis K, Dobrashian R, Sambatakou H. Chronic cavitary and fibrosing pulmonary and pleural aspergillosis: case series, proposed nomenclature change, and review. Clin Infect Dis 2003; 37 (Suppl. 03) S265-S280 64 Salzer HJF, Reimann M, Oertel C. et al; CPAnet. Aspergillus-specific IgG antibodies for diagnosing chronic pulmonary aspergillosis compared to the reference standard. Clin Microbiol Infect 2023; S1198-743X (23)00416-0 65 Bongomin F, Harris C, Foden P, Kosmidis C, Denning DW. Innate and Adaptive Immune Defects In Chronic Pulmonary Aspergillosis. J Fungi (Basel) 2017; 3 (02) 26 66 Colombo SAP, Hashad R, Denning DW. et al. Defective interferon-gamma production is common in chronic pulmonary aspergillosis. J Infect Dis 2022; 225 (10) 1822-1831 67 Watanabe S, Suzuki J, Suzukawa M. et al. Serum total IgE may be a biomarker among chronic pulmonary aspergillosis patients with elevated serum total IgE levels: a cohort study with pathological evaluations. Med Mycol 2022; 60 (03) myac006 68 Sehgal IS, Dhooria S, Muthu V. et al. Identification of distinct immunophenotypes in chronic pulmonary aspergillosis using cluster analysis. Mycoses 2023; 66 (04) 299-303 69 Ito Y, Takazono T, Obase Y. et al. Serum cytokines usefulness for understanding the pathology in allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. J Fungi (Basel) 2022; 8 (05) 436 70 Khosravi AR, Shokri H, Hassan Al-Heidary S, Ghafarifar F. Evaluation of murine lung epithelial cells (TC-1 JHU-1) line to develop Th2-promoting cytokines IL-25/IL-33/TSLP and genes Tlr2/Tlr4 in response to Aspergillus fumigatus . J Mycol Med 2018; 28 (02) 349-354 71 Garth JM, Reeder KM, Godwin MS. et al. IL-33 signaling regulates innate IL-17A and IL-22 production via suppression of prostaglandin E2 during Lung Fungal Infection. J Immunol 2017; 199 (06) 2140-2148 72 Düesberg U, Wosniok J, Naehrlich L, Eschenhagen P, Schwarz C. Risk factors for respiratory Aspergillus fumigatus in German Cystic Fibrosis patients and impact on lung function. Sci Rep 2020; 10 (01) 18999 73 Brandt C, Roehmel J, Rickerts V, Melichar V, Niemann N, Schwarz C. Aspergillus bronchitis in patients with cystic fibrosis. Mycopathologia 2018; 183 (01) 61-69 74 Armstead J, Morris J, Denning DW. Multi-country estimate of different manifestations of aspergillosis in cystic fibrosis. PLoS One 2014; 9 (06) e98502 75 European Cystic Fibrosis Society. . Accessed September 26, 2023 at: Https://www.Ecfs.Eu/Projects/Ecfs-Patient-Registry/Annual-Reports; 2023 76 Schwarz C. Clinical relevance of fungi in cystic fibrosis. Semin Respir Crit Care Med 2023; 44 (02) 252-259 77 Chrdle A, Mustakim S, Bright-Thomas RJ, Baxter CG, Felton T, Denning DW. Aspergillus bronchitis without significant immunocompromise. Ann N Y Acad Sci 2012; 1272: 73-85 78 Accessed September 14, 2023 at: https://www.allergome.org 79 Denning DW, Pfavayi LT. Poorly controlled asthma—-easy wins and future prospects for addressing fungal allergy. Allergol Int 2023; 72 (04) 493-506 80 Knutsen AP, Bush RK, Demain JG. et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol 2012; 129 (02) 280-291 , quiz 292–293 81 Pavord ID, Beasley R, Agusti A. et al. After asthma: redefining airways diseases. Lancet 2018; 391 (10118): 350-400 82 Wardlaw AJ, Rick EM, Pur Ozyigit L, Scadding A, Gaillard EA, Pashley CH. New perspectives in the diagnosis and management of allergic fungal airway disease. J Asthma Allergy 2021; 14: 557-573 83 O'Driscoll BR, Hopkinson LC, Denning DW. Mold sensitization is common amongst patients with severe asthma requiring multiple hospital admissions. BMC Pulm Med 2005; 5: 4 84 Brusselle GG, Koppelman GH. Biologic therapies for severe asthma. N Engl J Med 2022; 386 (02) 157-171 85 Ray A, Oriss TB, Wenzel SE. Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol 2015; 308 (02) L130-L140 86 Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. Immunity 2019; 50 (04) 975-991 87 Wiesner DL, Klein BS. Lung epithelium: barrier immunity to inhaled fungi and driver of fungal-associated allergic asthma. Curr Opin Microbiol 2017; 40: 8-13 88 Balenga NA, Klichinsky M, Xie Z. et al. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat Commun 2015; 6: 6763 89 Wiesner DL, Merkhofer RM, Ober C. et al. Club cell TRPV4 serves as a damage sensor driving lung allergic inflammation. Cell Host Microbe 2020; 27 (04) 614-628.e6 90 Cayrol C, Duval A, Schmitt P. et al. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol 2018; 19 (04) 375-385 91 Janahi IA, Rehman A, Al-Naimi AR. Allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Ann Thorac Med 2017; 12 (02) 74-82 92 Maturu VN, Agarwal R. Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy 2015; 45 (12) 1765-1778 93 De Baets F, De Keyzer L, Van Daele S. et al. Risk factors and impact of allergic bronchopulmonary aspergillosis in Pseudomonas aeruginosa-negative CF patients. Pediatr Allergy Immunol 2018; 29 (07) 726-731 94 Stevens DA, Moss RB, Kurup VP. et al; Participants in the Cystic Fibrosis Foundation Consensus Conference. Allergic bronchopulmonary aspergillosis in cystic fibrosis–state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis 2003; 37 (Suppl. 03) S225-S264 95 Agarwal R, Sehgal IS, Dhooria S, Aggarwal AN. Developments in the diagnosis and treatment of allergic bronchopulmonary aspergillosis. Expert Rev Respir Med 2016; 10 (12) 1317-1334 96 Steels S, Proesmans M, Bossuyt X, Dupont L, Frans G. Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Crit Rev Clin Lab Sci 2023; 60 (01) 1-24 97 Ohn M, Robinson P, Selvadurai H, Fitzgerald DA. Question 11: how should allergic bronchopulmonary aspergillosis [ABPA] be managed in cystic fibrosis?. Paediatr Respir Rev 2017; 24: 35-38 98 Castellani C, Duff AJA, Bell SC. et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros 2018; 17 (02) 153-178 99 Knutsen AP, Slavin RG. Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis. Clin Dev Immunol 2011; 2011: 843763 100 Knutsen AP, Hutchinson PS, Albers GM, Consolino J, Smick J, Kurup VP. Increased sensitivity to IL-4 in cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Allergy 2004; 59 (01) 81-87 101 Lameire S, Hammad H. Lung epithelial cells: upstream targets in type 2-high asthma. Eur J Immunol 2023; e2250106 102 Jelihovsky T. The structure of bronchial plugs in mucoid impaction, bronchocentric granulomatosis and asthma. Histopathology 1983; 7 (02) 153-167 103 Katzenstein AL, Liebow AA, Friedman PJ. Bronchocentric granulomatosis, mucoid impaction, and hypersensitivity reactions to fungi. Am Rev Respir Dis 1975; 111 (04) 497-537 104 Persson EK, Verstraete K, Heyndrickx I. et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 2019; 364 (6442) eaaw4295 105 Fahy JV, Locksley RM. Making asthma crystal clear. N Engl J Med 2019; 381 (09) 882-884 106 Gevaert E, Delemarre T, De Volder J. et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J Allergy Clin Immunol 2020; 145 (01) 427-430.e4 107 Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev 2011; 20 (121) 156-174 108 Raghu G, Remy-Jardin M, Ryerson CJ. et al. Diagnosis of hypersensitivity pneumonitis in adults. An Official ATS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2020; 202 (03) e36-e69 109 Meeker DP, Gephardt GN, Cordasco Jr EM, Wiedemann HP. Hypersensitivity pneumonitis versus invasive pulmonary aspergillosis: two cases with unusual pathologic findings and review of the literature. Am Rev Respir Dis 1991; 143 (02) 431-436 110 Gerfaud-Valentin M, Reboux G, Traclet J, Thivolet-Béjui F, Cordier JF, Cottin V. Occupational hypersensitivity pneumonitis in a baker: a new cause. Chest 2014; 145 (04) 856-858 111 Reich JM. Chirping rales in bird-fancier's lung. Chest 1993; 104 (01) 326-327 112 Denning DW, Follansbee SE, Scolaro M, Norris S, Edelstein H, Stevens DA. Pulmonary aspergillosis in the acquired immunodeficiency syndrome. N Engl J Med 1991; 324 (10) 654-662 113 Mistry H, Ajsivinac Soberanis HM, Kyyaly MA. et al. The clinical implications of Aspergillus fumigatus sensitization in difficult-to-treat asthma patients. J Allergy Clin Immunol Pract 2021; 9 (12) 4254-4267.e10 114 Selman M, Pardo A, King Jr TE. Hypersensitivity pneumonitis: insights in diagnosis and pathobiology. Am J Respir Crit Care Med 2012; 186 (04) 314-324 115 Garg A, Bhalla AS, Naranje P, Vyas S, Garg M. Decoding the guidelines of invasive pulmonary aspergillosis in critical care setting: imaging perspective. Indian J Radiol Imaging 2023; 33 (03) 382-391 116 Greene R. The radiological spectrum of pulmonary aspergillosis. Med Mycol 2005; 43 (Suppl. 01) S147-S154 117 Bercusson A, Jarvis G, Shah A. CF fungal disease in the age of CFTR Modulators. Mycopathologia 2021; 186 (05) 655-664 118 Agarwal R. High attenuation mucoid impaction in allergic bronchopulmonary aspergillosis. World J Radiol 2010; 2 (01) 41-43 119 Fenoglio CM, Reboux G, Sudre B. et al. Diagnostic value of serum precipitins to mould antigens in active hypersensitivity pneumonitis. Eur Respir J 2007; 29 (04) 706-712
 

Comments (0)

No login
gif