MRI radiomics for hamstring strain injury identification and return to sport classification: a pilot study

Opar DA, Williams MD, Shield AJ. Hamstring Strain Injuries: Factors that Lead to Injury and Re-Injury. Sports Med. 2012;42:209–26.

PubMed  Google Scholar 

Feeley BT, Kennelly S, Barnes RP, Muller MS, Kelly BT, Rodeo SA, et al. Epidemiology of National Football League Training Camp Injuries from 1998 to 2007. Am J Sports Med. 2008;36:1597–603.

PubMed  Google Scholar 

Dalton SL, Kerr ZY, Dompier TP. Epidemiology of Hamstring Strains in 25 NCAA Sports in the 2009–2010 to 2013–2014 Academic Years. Am J Sports Med. 2015;43:2671–9.

PubMed  Google Scholar 

Malliaropoulos N, Papacostas E, Kiritsi O, Rad P-M, Papalada A, Gougoulias N, et al. Posterior Thigh Muscle Injuries in Elite Track and Field Athletes. Am J Sports Med. 2010;38:1813–9.

PubMed  Google Scholar 

Verrall GM, Kalairajah Y, Slavotinek JP, Spriggins AJ. Assessment of player performance following return to sport after hamstring muscle strain injury. J Sci Med Sport. 2006;9:87–90.

CAS  PubMed  Google Scholar 

Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, et al. Longitudinal Study Comparing Sonographic and MRI Assessments of Acute and Healing Hamstring Injuries. Am J Roentgenol. 2004;183:975–84.

Google Scholar 

Pieters D, Wezenbeek E, Schuermans J, Witvrouw E. Return to Play After a Hamstring Strain Injury: It is Time to Consider Natural Healing. Sports Med. 2021;51:2067–77.

PubMed  Google Scholar 

van der Horst N, van de Hoef S, Reurink G, Huisstede B, Backx F. Return to Play After Hamstring Injuries: A Qualitative Systematic Review of Definitions and Criteria. Sports Med. 2016;46:899–912.

PubMed  PubMed Central  Google Scholar 

de Visser H, Reijman M, Heijboer M, Bos P. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46:124–30.

PubMed  Google Scholar 

Schut L, Wangensteen A, Maaskant J, Tol JL, Bahr R, Moen M. Can Clinical Evaluation Predict Return to Sport after Acute Hamstring Injuries? A Systematic Review. Sports Med. 2017;47:1123–44.

PubMed  Google Scholar 

Hamilton B, Wangensteen A, Whiteley R, Almusa E, Geertsema L, Targett S, et al. Cohen’s MRI scoring system has limited value in predicting return to play. Knee Surg Sports Traumatol Arthrosc. 2018;26:1288–94. https://doi.org/10.1007/s00167-016-4403-8.

Article  PubMed  Google Scholar 

Reurink G, Brilman EG, de Vos R-J, Maas M, Moen MH, Weir A, et al. Magnetic Resonance Imaging in Acute Hamstring Injury: Can We Provide a Return to Play Prognosis? Sports Med. 2015;45:133–46.

PubMed  Google Scholar 

Svensson K, Alricsson M, Eckerman M, Magounakis T, Werner S. The correlation between the imaging characteristics of hamstring injury and time required before returning to sports: a literature review. J Exerc Rehabil. 2016;12:134–42.

PubMed  PubMed Central  Google Scholar 

Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46:112–7.

PubMed  Google Scholar 

van Heumen M, Tol JL, de Vos R-J, Moen MH, Weir A, Orchard J, et al. The prognostic value of MRI in determining reinjury risk following acute hamstring injury: a systematic review. Br J Sports Med. 2017;51:1355–63.

PubMed  Google Scholar 

Rudisill SS, Kucharik MP, Varady NH, Martin SD. Evidence-Based Management and Factors Associated With Return to Play After Acute Hamstring Injury in Athletes: A Systematic Review. Orthop J Sports Med. 2021;9:23259671211053830.

Google Scholar 

Jacobsen P, Witvrouw E, Muxart P, Tol JL, Whiteley R. A combination of initial and follow-up physiotherapist examination predicts physician-determined time to return to play after hamstring injury, with no added value of MRI. Br J Sports Med. 2016;50:431–9.

PubMed  Google Scholar 

Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, et al. Hamstring Reinjuries Occur at the Same Location and Early After Return to Sport: A Descriptive Study of MRI-Confirmed Reinjuries. Am J Sports Med. 2016;44:2112–21.

PubMed  Google Scholar 

Biglands JD, Grainger AJ, Robinson P, Tanner SF, Tan AL, Feiweier T, et al. MRI in acute muscle tears in athletes: can quantitative T2 and DTI predict return to play better than visual assessment? Eur Radiol. 2020;30:6603–13.

CAS  PubMed  PubMed Central  Google Scholar 

McAleer S, Macdonald B, Lee J, Zhu W, Giakoumis M, Maric T, et al. Time to return to full training and recurrence of rectus femoris injuries in elite track and field athletes 2010–2019; a 9-year study using the British Athletics Muscle Injury Classification. Scand J Med Sci Sports. 2022;32:1109–18.

PubMed  Google Scholar 

Pollock N, Patel A, Chakraverty J, Suokas A, James SLJ, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in intratendinous ('c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2016;50:305–10.

PubMed  Google Scholar 

Shamji R, James SLJ, Botchu R, Khurniawan KA, Bhogal G, Rushton A. Association of the British Athletic Muscle Injury Classification and anatomic location with return to full training and reinjury following hamstring injury in elite football. BMJ Open Sport Exerc Med. 2021;7:e001010.

PubMed  PubMed Central  Google Scholar 

Tears C, Rae G, Hide G, Sinha R, Franklin J, Brand P, et al. The British Athletics Muscle Injury Classification grading system as a predictor of return to play following hamstrings injury in professional football players. Phys Ther Sport. 2022;58:46–51.

PubMed  Google Scholar 

Green B, Bourne MN, van Dyk N, Pizzari T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br J Sports Med. 2020;54:1081–8.

PubMed  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278:563–77.

PubMed  Google Scholar 

Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2:36.

PubMed  PubMed Central  Google Scholar 

Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods. 2016;264:47–56.

PubMed  Google Scholar 

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–90.

PubMed  Google Scholar 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19.

PubMed  Google Scholar 

Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45:S173–86.

PubMed  Google Scholar 

McCarthy P. Source code for: FSLeyes. Zenodo; 2019. Available from: https://doi.org/10.5281/zenodo.3530921.

van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Can Res. 2017;77:e104–7.

Google Scholar 

Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges J-P, et al. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18 F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J Nucl Med. 2011;52:369–78.

PubMed  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–30.

MathSciNet  Google Scholar 

Efron B. Bootstrap methods: another look at the jackknife. Ann Statist. 1979;7:1–26. https://doi.org/10.1214/aos/1176344552.full.

Article  MathSciNet  Google Scholar 

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.

CAS  PubMed  PubMed Central  Google Scholar 

Friedman M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J Am Stat Assoc. 1937;32:675–701.

Google Scholar 

Friedman M. A Correction. J Am Stat Assoc. 1939;34:109–109.

Google Scholar 

Friedman M. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. Ann Math Statist. 1940;11:86–92.

MathSciNet  Google Scholar 

Conover WJ. Practical nonparametric statistics. 3rd ed. Wiley; 1999.

Google Scholar 

Wille C, Hurley SA, Adluru N, Alcock R, Heiderscheit BC, Kijowski R. Quantitative muscle microstructural changes detected with diffusion tensor imaging following acute hamstring strain injuries. In: Proceedings of the Radiological Society of North America Annual Meeting. 2019. Available from: https://archive.rsna.org/2019/19014912.html.

Greenky M, Cohen S. Magnetic resonance imaging for assessing hamstring injuries: clinical benefits and pitfalls – a review of the current literature. OAJSM. 2017;8:167–70.

PubMed  PubMed Central  Google Scholar 

Froeling M, Oudeman J, Strijkers GJ, Maas M, Drost MR, Nicolay K, et al. Muscle Changes Detected with Diffusion-Tensor Imaging after Long-Distance Running. Radiology. 2015;274:548–62.

PubMed  Google Scholar 

Hooijmans MT, Monte JRC, Froeling M, Berg-Faay S, Aengevaeren VL, Hemke R, et al. Quantitative MRI Reveals Microstructural Changes in the Upper Leg Muscles After Running a Marathon. J Magn Reson Imaging. 2020;52:407–17.

PubMed  PubMed Central  Google Scholar 

Van Donkelaar CC, Kretzers LJG, Bovendeerd PHM, Lataster LMA, Nicolay K, Janssen JD, et al. Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anatomy. 1999;194:79–88.

Google Scholar 

Hallén A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32:1229–36.

PubMed  Google Scholar 

Kilcoyne KG, Dickens JF, Keblish D, Rue J-P, Chronister R. Outcome of Grade I and II Hamstring Injuries in Intercollegiate Athletes: A Novel Rehabilitation Protocol. Sports Health. 2011;3:528–33.

PubMed  PubMed Central  Google Scholar 

Gidwani M, Chang K, Patel JB, Hoebel KV, Ahmed SR, Singh P, et al. Inconsistent Partitioning and Unproductive Feature Associations Yield Idealized Radiomic Models. Radiology. 2023;307:e220715.

PubMed  Google Scholar 

留言 (0)

沒有登入
gif