Peroxidase-mimetic colloidal nanozyme from ozone-oxidized lignocellulosic biomass for biosensing of H2O2 and bacterial contamination in water

Altintas Z, Akgun M, Kokturk G, Uludag Y (2018) A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens Bioelectron 100:541–548. https://doi.org/10.1016/j.bios.2017.09.046

Article  CAS  PubMed  Google Scholar 

Alves IP, Reis NM (2019) Microfluidic smartphone quantitation of Escherichia coli in synthetic urine. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111624

Article  PubMed  Google Scholar 

Cui F, Ye Y, Ping J, Sun X (2020) Carbon dots: current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2020.112085

Article  PubMed  PubMed Central  Google Scholar 

Devi M, Das P, Boruah PK et al (2021) Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104803

Article  Google Scholar 

Ganguly P, Sengupta S, Das P, Bhowal A (2020) Valorization of food waste: extraction of cellulose, lignin and their application in energy use and water treatment. Fuel. https://doi.org/10.1016/j.fuel.2020.118581

Article  Google Scholar 

Gao L, Gao X, Yan X (2020) Kinetics and mechanisms for nanozymes. In: Yan X (ed) Nanozymology: connecting biology and nanotechnology. Springer Singapore, Singapore, pp 17–39

Giana HE, Silveira L, Zângaro RA et al (2003) Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J Fluoresc. https://doi.org/10.1023/B:JOFL.0000008059.74052.3c

Article  Google Scholar 

Gopinath SCB, Tang TH, Chen Y et al (2014) Bacterial detection: from microscope to smartphone. Biosens Bioelectron 60:332–342

Article  CAS  PubMed  Google Scholar 

Goudarzi A, Lin LT, Ko FK (2014) X-ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. J Nanotechnol Eng Med. https://doi.org/10.1115/1.4028300

Article  Google Scholar 

Guo Y, Li J, Song X et al (2021) Label-free detection of Staphylococcus aureus based on bacteria-imprinted polymer and turn-on fluorescence probes. ACS Appl Bio Mater 4:420–427. https://doi.org/10.1021/acsabm.0c00897

Article  CAS  PubMed  Google Scholar 

Han J, Zhang L, Hu L et al (2018) Nanozyme-based lateral flow assay for the sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 101:5770–5779. https://doi.org/10.3168/jds.2018-14429

Article  CAS  PubMed  Google Scholar 

Hu J, Tang F, Wang L et al (2021) Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2021.130560

Article  Google Scholar 

Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412

Article  CAS  PubMed  Google Scholar 

Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron. https://doi.org/10.1016/S0956-5663(99)00039-1

Article  PubMed  Google Scholar 

Jain S, Chattopadhyay S, Jackeray R et al (2012) Highly sensitive detection of Salmonella typhi using surface aminated polycarbonate membrane enhanced-ELISA. Biosens Bioelectron 31:37–43. https://doi.org/10.1016/j.bios.2011.09.031

Article  CAS  PubMed  Google Scholar 

Javier-Astete R, Jimenez-Davalos J, Zolla G (2021) Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum and Guazuma crinita Lam. PLoS One. https://doi.org/10.1371/journal.pone.0256559

Article  PubMed  PubMed Central  Google Scholar 

Kadadou D, Tizani L, Wadi VS et al (2022) Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.107070

Article  PubMed  Google Scholar 

Leslie JF, Mishra A, Thebault A, et al (2017) Burden of foodborne disease due to bacterial hazards associated with beef, dairy, poultry meat, and vegetables in Ethiopia and Burkina Faso

Liu P, Wang Y, Han L et al (2020) Colorimetric assay of bacterial pathogens based on Co3O4 magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoretic chromatography. ACS Appl Mater Interfaces 12:9090–9097. https://doi.org/10.1021/acsami.9b23101

Article  CAS  PubMed  Google Scholar 

Lou-Franco J, Zhao Y, Nelis JLD et al (2023) Smartphone-based immunochemical sensor exploiting peroxidase-like activity of ligand-capped gold nanostars: a proof-of-concept detection of Mycobacterium bovis. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2022.114857

Article  PubMed  Google Scholar 

Ma T, Huang K, Cheng N (2023) Recent advances in nanozyme-mediated strategies for pathogen detection and control. Int J Mol Sci. https://doi.org/10.3390/ijms241713342

Article  PubMed  PubMed Central  Google Scholar 

Oh S, Kim J, Tran VT et al (2018) Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza a virus detection. ACS Appl Mater Interfaces 10:12534–12543. https://doi.org/10.1021/acsami.8b02735

Article  CAS  PubMed  Google Scholar 

Pöhlmann C, Wang Y, Humenik M et al (2009) Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens Bioelectron 24:2766–2771. https://doi.org/10.1016/j.bios.2009.01.042

Article  CAS  PubMed  Google Scholar 

Quintela IA, de Los Reyes BG, Lin CS, Wu VCH (2019) Simultaneous colorimetric detection of a variety of Salmonella spp. In food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01138

Article  PubMed  PubMed Central  Google Scholar 

Ren X, Chen D, Wang Y et al (2022) Nanozymes-recent development and biomedical applications. J Nanobiotechnology. https://doi.org/10.1186/s12951-022-01295-y

Article  PubMed  PubMed Central  Google Scholar 

Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29:539–549

Article  CAS  PubMed  Google Scholar 

Shafei M, Honeychurch KC (2013) Voltammetric behaviour of hydrogen peroxide at a silver electrode fabricated from a rewritable digital versatile disc (DVD) and its determination in water samples. Anal Methods 5:6631–6636. https://doi.org/10.1039/c3ay41557k

Article  CAS  Google Scholar 

Shrivastava S, Wl Lee, Lee NE (2018) Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens Bioelectron 109:90–97. https://doi.org/10.1016/j.bios.2018.03.006

Article  CAS  PubMed  Google Scholar 

Sluiter A, Hames B, Ruiz R, et al (2008) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) (Revised July 2011)

Songca SP (2022) Applications of nanozymology in the detection and identification of viral, bacterial and fungal pathogens. Int J Mol Sci. https://doi.org/10.3390/ijms23094638

Article  PubMed  PubMed Central  Google Scholar 

Sonkar RM, Gade PS, Bokade V et al (2021) Ozone assisted autohydrolysis of wheat bran enhances xylooligosaccharide production with low generation of inhibitor compounds: a comparative study. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.125559

Article  Google Scholar 

Sun H, Zhou Y, Ren J, Qu X (2018) Kohlenstoff-Nanozyme: Enzymatische Eigenschaften, Katalysemechanismen und Anwendungen. Angew Chem 130:9366–9379. https://doi.org/10.1002/ange.201712469

Article  ADS  Google Scholar 

Wang C, Gao X, Wang S, Liu Y (2020) A smartphone-integrated paper sensing system for fluorescent and colorimetric dual-channel detection of foodborne pathogenic bacteria. Anal Bioanal Chem 412:611–620. https://doi.org/10.1007/s00216-019-02208-z

Article  CAS  PubMed  Google Scholar 

WHO F WHO estimates of the global burden of foodborne diseases. 2015

WHO (2017) Guidelines for Drinking-water Quality FOURTH EDITION INCORPORATING THE FIRST ADDENDUM

Wu L, Zhou S, Wang G et al (2021) Nanozyme applications: a glimpse of insight in food safety. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.727886

Article  PubMed  PubMed Central  Google Scholar 

Xing G, Shang Y, Ai J et al (2023) Nanozyme-mediated catalytic signal amplification for microfluidic biosensing of foodborne bacteria. Anal Chem 95:13391–13399. https://doi.org/10.1021/acs.analchem.3c03232

Article  CAS  PubMed  Google Scholar 

Yang Z, Wang Y, Zhang D (2017) A novel multifunctional electrochemical platform for simultaneous detection, elimination, and inactivation of pathogenic bacteria based on the Vancomycin-functionalised AgNPs/3D-ZnO nanorod arrays. Biosens Bioelectron 98:248–253. https://doi.org/10.1016/j.bios.2017.06.058

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif