Numerical simulation on the damage behaviors of optical mirrors induced by film defects in high-power CW laser

Zuo, J., Lin, X.: High-power laser systems. Laser Photonics Rev. 16, 2100741 (2022)

Article  ADS  Google Scholar 

Lei, Z., Zhang, Y., Li, Q., et al.: Numerical and Experimental Study on Thermal Damage Induced by Medium—Infrared Laser. Photonics. 9(11), 838 (2022)

Article  CAS  Google Scholar 

Zhou, C.M., Cheng, Z.H., Peng, Y.F.: Heating by Optical Absorption and Cooling of High Power Laser Mirrors. Czech J. Phys. 53, 1195–1208 (2003)

Article  ADS  Google Scholar 

Bonora, S., Pilar, J., Lucianetti, A., et al.: Design of deformable mirrors for high power lasers High Power Laser. Sci. Eng. 4, e16 (2016)

Google Scholar 

Laurence, T.A., Bude, J.D., Ly, S., et al.: Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20–150 J/cm2). Opt. Express 20(10), 11561–11573 (2012)

Article  ADS  CAS  PubMed  Google Scholar 

Guo, Y., Sun, M., Jiao, Z., et al.: Laser damage and damage performance caused by near-field of final optics assembles for high power laser system. Proc. SPIE 11063, 172–177 (2019)

Google Scholar 

Ding, W., Chen, M., Cheng, J., et al.: Laser damage evolution by defects on diamond fly-cutting KDP surfaces. Int. J. Mech. Sci. 237, 107794 (2023)

Article  Google Scholar 

Reyné, S., Duchateau, G., Hallo, L., et al.: Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals. Appl. Phys. A 119, 1317–1326 (2015)

Article  ADS  Google Scholar 

Manenkov, A.A.: Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems. Opt. Eng. 53(1), 010901–010901 (2014)

Article  ADS  Google Scholar 

Bi, J., Zhang, X., Ni, X.: Numerical simulation of thermal damage process between laser and a photodiode for different magnitudes of pulse energy. Proc. SPIE 6839, 459–464 (2008)

Google Scholar 

Wang, B., Zhang, H., Qin, Y., et al.: Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers. Appl. Opt. 50(20), 3435–3441 (2011)

Article  ADS  CAS  PubMed  Google Scholar 

Hopper, R.W., Uhlmann, D.R.: Mechanism of inclusion damage in laser glass. J. Appl. Phys. 41(10), 4023–4037 (1970)

Article  ADS  CAS  Google Scholar 

Walker, T.H., Guenther, A., Nielsen, P.: Pulsed laser-induced damage to thin-film optical coatings: Part I: Experiment. IEEE J. Quantum Electron. 17(10), 2041–2052 (1981)

Article  ADS  Google Scholar 

Walker, T.H., Guenther, A., Nielsen, P.: Pulsed laser-induced damage to thin-film optical coatings: Part II: Theory. IEEE J. Quantum Electron. 17(10), 2053–2065 (1981)

Article  ADS  Google Scholar 

Bonneau, F., Combis, P., Rullier, J.L., et al.: Study of UV laser interaction with gold nanoparticles embedded in silica. Appl. Phys. B 75, 803–815 (2002)

Article  ADS  CAS  Google Scholar 

Génin, F.Y., Feit, M.D., Kozlowski, M.R., et al.: Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles. Appl. Opt. 39(21), 3654–3663 (2000)

Article  ADS  PubMed  Google Scholar 

Raman, R.N., Demos, S.G., Shen, N., et al.: Damage on fused silica optics caused by laser ablation of surface-bound microparticles. Opt. Express 24(3), 2634–2647 (2016)

Article  ADS  CAS  PubMed  Google Scholar 

Atikian, H.A., Sinclair, N., Latawiec, P., et al.: Diamond mirrors for high-power continuous-wave lasers. Nat. Commun. 13(1), 2610 (2022)

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Taylor, L.N., Brown, A.K., Pung, A.J., et al.: Continuous-wave laser damage of uniform and nanolaminate hafnia and titania optical coatings. Opt. Lett. 38(21), 4292–4295 (2013)

Article  ADS  CAS  PubMed  Google Scholar 

Ristau, D., Jupé, M., Starke, K.: Laser damage thresholds of optical coatings. Thin Solid Films 518(5), 1607–1613 (2009)

Article  ADS  CAS  Google Scholar 

Tumkur, T.U., Sokhoyan, R., Su, M.P., et al.: Toward high laser power beam manipulation with nanophotonic materials: evaluating thin film damage performance. Opt. Express 29(5), 7261–7275 (2021)

Article  ADS  CAS  PubMed  Google Scholar 

Han, K., Song, R., Xu, X., et al.: Influence of the contaminant size on the thermal damage of optical mirrors used in high energy laser system. Proc. SPIE 9952, 196–202 (2016)

Google Scholar 

Han, K., Song, R., Xu, X.: The thermal damage process of the contaminated optical element used in high energy laser system. Proc. SPIE 10173, 108–114 (2017)

Google Scholar 

Lou, Z., Han, K., Li, X.: Modeling for the thermal damage process of the optical film caused by contaminants. Proc. SPIE 10339, 277–284 (2017)

Google Scholar 

Lou, Z., Han, K., Chen, M., et al.: Modeling for the thermal stress damage of the optical elements induced by high energy laser. Proc. SPIE 10847, 163–169 (2018)

Google Scholar 

Lou, Z., Han, K., Zhang, C., et al.: The characterization of laser-induced thermal damage mechanism of mid-infrared optical coatings with surface contaminants. Phys. Scr. 95(3), 035507 (2020)

Article  ADS  CAS  Google Scholar 

Lai, R., Shi, P., Yi, Z., et al.: Triple-band surface plasmon resonance metamaterial absorber based on open-ended prohibited sign type monolayer grapheme. Micromachines. 14(5), 953 (2023)

Article  PubMed  PubMed Central  Google Scholar 

Wu, F., Shi, P., Yi, Z., et al.: Ultra-broadband solar absorber and high-efficiency thermal emitter from uv to mid-infrared spectrum. Micromachines. 14(5), 985 (2023)

Article  PubMed  PubMed Central  Google Scholar 

Zheng, Y., Yi, Z., Liu, L., et al.: Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl. Therm. Eng. 230, 120841 (2023)

Article  ADS  CAS  Google Scholar 

Liang, S., Xu, F., Li, W., et al.: Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 232, 121074 (2023)

Article  CAS  Google Scholar 

Chen, Z., Cai, P., Wen, Q., et al.: Graphene multi-frequency broadband and ultra-broadband terahertz absorber based on surface plasmon resonance. Electronics 12(12), 2655 (2023)

Article  CAS  Google Scholar 

He, T., Wei, C., Jiang, Z., et al.: Super-smooth surface demonstration and the physical mechanism of CO2 laser polishing of fused silica. Opt. Lett. 43(23), 5777–5780 (2018)

Article  ADS  CAS  PubMed  Google Scholar 

Zhang, P., Chu, J., Qu, G., et al.: Numerical simulation of convex shape beam spot on stress field of plasma-sprayed MCrAlY coating during laser cladding process. Int. J. Adv. Manufact. Technol. 118, 207–217 (2022)

Article  Google Scholar 

Lu, Q., Xu, W., He, X., et al.: Numerical simulation of defect influence on nanosecond laser manufacturing. Int. J. Therm. Sci. 183, 107900 (2023)

Article  Google Scholar 

留言 (0)

沒有登入
gif