Comparison of the 1064-nm picosecond laser with fractionated microlens array and 1565-nm non-ablative fractional laser for the treatment of enlarged pores: a randomized, split-face, controlled trial

Uhoda E, Piérard-Franchimont C, Petit L, Piérard GE (2005) The conundrum of skin pores in dermocosmetology. Dermatology. ;210(1):3–7. https://doi.org/10.1159/000081474. PMID: 15604536

Hernandez-Perez E, Khawaja HA, Alvarez TY (2000) Oral isotretinoin as part of the treatment of cutaneous aging. Dermatol Surg. ;26(7):649 – 52. https://doi.org/10.1046/j.1524-4725.2000.99210.x. PMID: 10886272

Phillips TJ, Gottlieb AB, Leyden JJ, Lowe NJ, Lew-Kaya DA, Sefton J, Walker PS, Gibson JR, Tazarotene Cream Photodamage Clinical Study Group (2002) ;. Efficacy of 0.1% tazarotene cream for the treatment of photodamage: a 12-month multicenter, randomized trial. Arch Dermatol. ;138(11):1486-93. https://doi.org/10.1001/archderm.138.11.1486. PMID: 12437455

Kakudo N, Kushida S, Tanaka N, Minakata T, Suzuki K, Kusumoto K (2011) A novel method to measure conspicuous facial pores using computer analysis of digital-camera-captured images: the effect of glycolic acid chemical peeling. Skin Res Technol 17(4):427–433. https://doi.org/10.1111/j.1600-0846.2011.00514.xEpub 2011 Feb 22. PMID: 21342294

Article  PubMed  Google Scholar 

Sayed KS, Hegazy R, Gawdat HI, Abdel Hay RM, Ahmed MM, Mohammed FN, Allam R, Fahim A (2021) The efficacy of intradermal injections of botulinum toxin in the management of enlarged facial pores and seborrhea: a split face-controlled study. J Dermatolog Treat. ;32(7):771–777. doi: 10.1080/09546634.2019.1708241. Epub 2020 Jan 3. PMID: 31865815

Marefat A, Dadkhahfar S, Tahvildari A, Robati RM (2022) The efficacy of polycaprolactone filler injection on enlarged facial pores. Dermatol Ther 35(8):e15600. https://doi.org/10.1111/dth.15600Epub 2022 Jun 8. PMID: 35622404

Article  CAS  PubMed  Google Scholar 

Lee SJ, Seok J, Jeong SY, Park KY, Li K, Seo SJ (2016) Facial Pores: Definition, Causes, and Treatment Options. Dermatol Surg. ;42(3):277 – 85. https://doi.org/10.1097/DSS.0000000000000657. PMID: 26918966

Manuskiatti W, Punyaratabandhu P, Tantrapornpong P, Yan C, Cembrano KAG (2021) Objective and long-term evaluation of the efficacy and safety of a 1064-nm Picosecond Laser with fractionated microlens array for the treatment of Atrophic Acne Scar in asians. Lasers Surg Med 53(7):899–905. https://doi.org/10.1002/lsm.23368Epub 2020 Dec 16. PMID: 33326626

Article  PubMed  Google Scholar 

Puaratanaarunkon T, Asawanonda P (2021) Efficacy of a one-session fractional picosecond 1064-nm laser for the treatment of atrophic acne scar and enlarged facial pores. J Cosmet Laser Ther 23(7–8):202–206 Epub 2022 Mar 23. PMID: 35318885

Article  PubMed  Google Scholar 

Palawisuth S, Manuskiatti W, Apinuntham C, Wanitphakdeedecha R, Cembrano KAG (2022) Quantitative assessment of the long-term efficacy and safety of a 1064-nm picosecond laser with fractionated microlens array in the treatment of enlarged pores in asians: a case-control study. Lasers Surg Med 54(3):348–354 Epub 2021 Jul 7. PMID: 34233039; PMCID: PMC9291000

Article  PubMed  Google Scholar 

Yim S, Lee YH, Choi YJ, Kim WS (2020) Split-face comparison of the picosecond 1064-nm nd:YAG laser using a microlens array and the quasi-long-pulsed 1064-nm nd:YAG laser for treatment of photoaging facial wrinkles and pores in asians. Lasers Med Sci 35(4):949–956. https://doi.org/10.1007/s10103-019-02906-1Epub 2019 Nov 16. PMID: 31734761

Article  PubMed  Google Scholar 

O Connor K, Cho SB, Chung HJ (2021) Wound Healing Profile after 1064- and 532-nm Picosecond Lasers with microlens array of in vivo human skin. Lasers Surg Med 53(8):1059–1064. https://doi.org/10.1002/lsm.23390Epub 2021 Feb 28. PMID: 33644902

Article  PubMed  Google Scholar 

Zhang M, Guan Y, Huang Y, Zhang E, Lin T, Wu Q (2021) Histological characteristics of skin treated with a fractionated 1064-nm nd: YAG Picosecond Laser with Holographic Optics. Lasers Surg Med 53(8):1073–1079. https://doi.org/10.1002/lsm.23389Epub 2021 Feb 10. PMID: 33565087

Article  PubMed  Google Scholar 

Chung HJ, Lee HC, Park J, Childs J, Hong J, Kim H, Cho SB (2019) Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin. Lasers Med Sci 34(6):1207–1215. https://doi.org/10.1007/s10103-018-02711-2Epub 2019 Jan 2. PMID: 30604347

Article  PubMed  Google Scholar 

Tanghetti Md E, Jennings J (2018) A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm nd:YAG with a holographic optic. Lasers Surg Med 50(1):37–44. https://doi.org/10.1002/lsm.22752Epub 2017 Nov 7. PMID: 29111604

Article  PubMed  Google Scholar 

Habbema L, Verhagen R, Van Hal R, Liu Y, Varghese B (2012) Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation. J Biophotonics 5(2):194–199. https://doi.org/10.1002/jbio.201100083Epub 2011 Nov 2. PMID: 22045580; PMCID: PMC3494308

Article  PubMed  Google Scholar 

Balu M, Lentsch G, Korta DZ, König K, Kelly KM, Tromberg BJ, Zachary CB (2017) In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin. Lasers Surg Med 49(6):555–562. https://doi.org/10.1002/lsm.22655Epub 2017 Mar 23. PMID: 28333369; PMCID: PMC5513776

Article  PubMed  PubMed Central  Google Scholar 

Jung JY, Cho SB, Chung HJ, Shin JU, Lee KH, Chung KY (2011) Treatment of periorbital wrinkles with 1550- and 1565-nm Er:glass fractional photothermolysis lasers: a simultaneous split-face trial. J Eur Acad Dermatol Venereol. ;25(7):811-8. doi: 10.1111/j.1468-3083.2010.03870.x. Epub 2010 Nov 4. PMID: 21054563

Munavalli GA, Split-Face (2016) Assessment of the synergistic potential of sequential Q-Switched nd:YAG Laser and 1565 nm fractional nonablative laser treatment for facial rejuvenation in Fitzpatrick skin type II-V patients. J Drugs Dermatol 15(11):1335–1342 PMID: 28095544

CAS  PubMed  Google Scholar 

Dou W, Yang Q, Yin Y, Fan X, Yang Z, Jian Z, Zhu Y, Wei J, Jing H, Ma X (2021) Fractional microneedle radiofrequency device and fractional erbium-doped glass 1,565-nm device treatment of human facial photoaging: a prospective, split-face, random clinical trial. J Cosmet Laser Ther 23(5–6):142–148 Epub 2022 Jan 27. PMID: 35083965

Article  PubMed  Google Scholar 

Yu W, Zhu J, Ma G, Yang J, Qiu Y, Chen Y, Chen H, Jin Y, Yang X, Hu X, Wang T, Chang L, Lin X (2018) Randomized split-face, controlled comparison of treatment with 1565-nm nonablative fractional laser for enlarged facial pores. Br J Dermatol 178(4):e271–e272. https://doi.org/10.1111/bjd.16115Epub 2018 Feb 27. PMID: 29192959

Article  CAS  PubMed  Google Scholar 

Wang Y, Zheng Y, Cai S (2022) Efficacy and safety of 1565-nm non-ablative fractional laser versus long-pulsed 1064-nm nd:YAG laser in treating enlarged facial pores. Lasers Med Sci 37(8):3279–3284. https://doi.org/10.1007/s10103-022-03622-zEpub 2022 Aug 15. PMID: 35971017; PMCID: PMC9525434

Article  PubMed  PubMed Central  Google Scholar 

Kwon HH, Choi SC, Lee WY, Jung JY, Park GH (2018) Clinical and Histological Evaluations of Enlarged Facial Skin Pores After Low Energy Level Treatments With Fractional Carbon Dioxide Laser in Korean Patients. Dermatol Surg. ;44(3):405–412. https://doi.org/10.1097/DSS.0000000000001313. PMID: 28902036

Magnani LR, Schweiger ES (2014) Fractional CO2 lasers for the treatment of atrophic acne scars: a review of the literature. J Cosmet Laser Ther 16(2):48–56 Epub 2013 Dec 5. PMID: 24131097

Article  PubMed  Google Scholar 

Marwan Al-Raeei (2021) Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 150:111209. https://doi.org/10.1016/j.chaos.2021.111209

Article  MathSciNet  Google Scholar 

Cerantola V, Rosa AD, Konôpková Z, Torchio R, Brambrink E, Rack A, Zastrau U, Pascarelli S (2021) New frontiers in extreme conditions science at synchrotrons and free electron lasers. J Phys Condens Matter. ;33(27). https://doi.org/10.1088/1361-648X/abfd50. PMID: 33930892

Yuan J, Lu Y, Wu Y, Gao XH, Chen HD (2022) Investigation of optimal energy or density of a fractional CO2 laser system in the treatment of stable non-segmental vitiligo. Complement Ther Clin Pract 49:101684. https://doi.org/10.1016/j.ctcp.2022.101684Epub 2022 Nov 2. PMID: 36343424

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif