Evaluation of changes in macular structures after subthreshold micropulse laser therapy on chronic central serous chorioretinopathy

Kaye R, Chandra S, Sheth J, Boon CJF, Sivaprasad S, Lotery A (2020) Central serous chorioretinopathy: an update on risk factors, pathophysiology and imaging modalities. Prog Retin Eye Res 79:100865 Epub 2020/05/15. https://doi.org/10.1016/j.preteyeres.2020.100865

Article  CAS  PubMed  Google Scholar 

Bazzazi N, Ahmadpanah M, Akbarzadeh S, Seif Rabiei MA, Holsboer-Trachsler E, Brand S (2015) In patients suffering from idiopathic central serous chorioretinopathy, anxiety scores are higher than in healthy controls, but do not vary according to sex or repeated central serous chorioretinopathy. Neuropsychiatr Dis Treat 11:1131–1136 Epub 2015/05/23. https://doi.org/10.2147/ndt.S83216

Article  PubMed  PubMed Central  Google Scholar 

Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S (2004) Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology 111(2):244–249 Epub 2004/03/17. https://doi.org/10.1016/j.ophtha.2003.09

Article  PubMed  Google Scholar 

Liu B, Deng T, Zhang J, RISK FACTORS FOR CENTRAL SEROUS (2016) CHORIORETINOPATHY: a systematic review and Meta-analysis. Retina (Philadelphia Pa) 36(1):9–19 Epub 2015/12/29. https://doi.org/10.1097/iae.0000000000000837

Article  PubMed  Google Scholar 

van Rijssen TJ, van Dijk EHC, Yzer S, Ohno-Matsui K, Keunen JEE, Schlingemann RO et al (2019) Central serous chorioretinopathy: towards an evidence-based treatment guideline. Prog Retin Eye Res 73:100770 PubMed PMID: 31319157

Article  PubMed  Google Scholar 

Nicholson B, Noble J, Forooghian F, Meyerle C (2013) Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58(2):103–126 Epub 2013/02/16. https://doi.org/10.1016/j.survophthal.2012.07.004

Article  PubMed  PubMed Central  Google Scholar 

Yu J, Ye X, Li L, Chang Q, Jiang C (2021) Relationship between photoreceptor layer changes before half-dose photodynamic therapy and functional and anatomic outcomes in central serous chorioretinopathy. Eye 35(3):1002–1010 Epub 2020/06/18. https://doi.org/10.1038/s41433-020-1018-6

Article  CAS  PubMed  Google Scholar 

Robertson DM (1986) Argon laser photocoagulation treatment in central serous chorioretinopathy. Ophthalmology 93(7):972–974 Epub 1986/07/01. doi: 10.1016/s0161-6420(86)33652-2. PubMed PMID: 3531957

Article  CAS  PubMed  Google Scholar 

Robertson DM, Ilstrup D (1983) Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am J Ophthalmol 95(4):457–466 Epub 1983/04/01. https://doi.org/10.1016/0002-9394(83)90265-9

Article  CAS  PubMed  Google Scholar 

Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N et al (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 48:82–118 Epub 2015/06/01. https://doi.org/10.1016/j.preteyeres.2015.05.003

Article  CAS  PubMed  Google Scholar 

van Dijk EHC, Fauser S, Breukink MB, Blanco-Garavito R, Groenewoud JMM, Keunen JEE et al (2018) Half-dose photodynamic therapy versus high-density Subthreshold Micropulse Laser treatment in patients with Chronic Central Serous Chorioretinopathy: the PLACE trial. Ophthalmology 125(10):1547–1555 Epub 2018/05/20. https://doi.org/10.1016/j.ophtha.2018.04.021

Article  PubMed  Google Scholar 

Reibaldi M, Cardascia N, Longo A, Furino C, Avitabile T, Faro S et al (2010) Standard-fluence versus low-fluence photodynamic therapy in chronic central serous chorioretinopathy: a nonrandomized clinical trial. American journal of ophthalmology. ;149(2):307 – 15.e2. Epub 2009/11/10. doi: 10.1016/j.ajo.2009.08.026. PubMed PMID: 19896635

Lim JI, Glassman AR, Aiello LP, Chakravarthy U, Flaxel CJ, Spaide RF (2014) Collaborative retrospective macula society study of photodynamic therapy for chronic central serous chorioretinopathy. Ophthalmology 121(5):1073–1078 PubMed PMID: 24439758

Article  PubMed  Google Scholar 

Kang HM, Choi JH, Koh HJ, Lee SC (2020) Long-term treatment response after intravitreal bevacizumab injections for patients with central serous chorioretinopathy. PLoS One. ;15(9):e0238725. Epub 2020/09/09. https://doi.org/10.1371/journal.pone.0238725. PubMed PMID: 32898167; PubMed Central PMCID: PMCPMC7478837 institute does not involve in conducting this study. Choikang Seoul Eye Clinic does not have any role in the design or conduct of this research. There was no other conflict of Interest for each author. This does not alter our adherence to PLOS ONE policies on sharing data and materials. There are no relevant patents, marketed products, or products in development to declare

Chen SN, Hwang JF, Tseng LF, Lin CJ (2008) Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology 115(12):2229–2234 Epub 2008/12/02. https://doi.org/10.1016/j.ophtha.2008.08.026

Article  PubMed  Google Scholar 

Sivaprasad S, Elagouz M, McHugh D, Shona O, Dorin G (2010) Micropulsed diode laser therapy: evolution and clinical applications. Surv Ophthalmol 55(6):516–530 PubMed PMID: 20850854

Article  PubMed  Google Scholar 

Roca JA, Wu L, Fromow-Guerra J, Rodríguez FJ, Berrocal MH, Rojas S et al (2018) Yellow (577 nm) micropulse laser versus half-dose verteporfin photodynamic therapy in eyes with chronic central serous chorioretinopathy: results of the pan-american collaborative retina study (PACORES) Group. Br J Ophthalmol 102(12):1696–1700 Epub 2018/02/14. https://doi.org/10.1136/bjophthalmol-2017-311291

Article  PubMed  Google Scholar 

Han J, Cho NS, Kim K, Kim ES, Kim DG, Kim JM et al (2020) FUNDUS AUTOFLUORESCENCE PATTERNS IN CENTRAL SEROUS CHORIORETINOPATHY. Retina (Philadelphia. Pa) 40(7):1387–1394 Epub 2019/06/04. https://doi.org/10.1097/iae.0000000000002580

Article  CAS  Google Scholar 

Uzlu D, Erdöl H, Kola M, Özbay AD (2021) The efficacy of subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy. Lasers Med Sci 36(5):981–988 Epub 2020/08/20. https://doi.org/10.1007/s10103-020-03129-5

Article  PubMed  Google Scholar 

Cook B, Lewis GP, Fisher SK, Adler R (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Investig Ophthalmol Vis Sci 36(6):990–996 Epub 1995/05/01. PubMed PMID: 7730033

CAS  Google Scholar 

Hwang S, Kang SW, Kim SJ, Jang JW, Kim KT, PHOTODYNAMIC THERAPY FOR SYMPTOMATIC SUBFOVEAL RETINAL PIGMENT, EPITHELIAL DETACHMENT IN CENTRAL SEROUS CHORIORETINOPATHY (2019) Outcomes and prognostic factors. Retina (Philadelphia Pa) 39(6):1117–1124 Epub 2018/03/09. https://doi.org/10.1097/iae.0000000000002108

Article  PubMed  Google Scholar 

Feenstra HMA, Hahn LC, van Rijssen TJ, Tsonaka R, Breukink MB, Keunen JEE, EFFICACY OF HALF-DOSE PHOTODYNAMIC THERAPY VERSUS HIGH-DENSITY SUBTHRESHOLD MICROPULSE LASER FOR TREATING PIGMENT EPITHELIAL DETACHMENTS IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY et al (2022) Retina (Philadelphia Pa) 42(4):721–729 Epub 2021/12/06. https://doi.org/10.1097/iae.0000000000003363

Article  CAS  PubMed  Google Scholar 

Sramek C, Mackanos M, Spitler R, Leung LS, Nomoto H, Contag CH et al (2011) Non-damaging retinal phototherapy: dynamic range of heat shock protein expression. Investig Ophthalmol Vis Sci 52(3):1780–1787 Epub 2010/11/20. https://doi.org/10.1167/iovs.10-5917

Article  CAS  Google Scholar 

Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881 Epub 2005/07/01. https://doi.org/10.1152/physrev.00021.2004

Article  CAS  PubMed  Google Scholar 

Litts KM, Zhang Y, Freund KB, Curcio CA, OPTICAL COHERENCE TOMOGRAPHY AND HISTOLOGY OF AGE-RELATED MACULAR DEGENERATION SUPPORT, MITOCHONDRIA AS REFLECTIVITY SOURCES, Retina, Philadelphia (2018) Pa) 38(3):445–461 Epub 2017/12/07. https://doi.org/10.1097/iae.0000000000001946

Article  CAS  Google Scholar 

Figueiredo N, Sarraf D, Gunnemann F, Sadda SR, Bansal A, Berger AR et al (2022) Longitudinal Assessment of Ellipsoid Zone Recovery using En face Optical Coherence Tomography after Retinal Detachment Repair. Am J Ophthalmol 236:212–220 Epub 2021/10/26. https://doi.org/10.1016/j.ajo.2021.10.012

Article  PubMed  Google Scholar 

Matsumoto H, Sato T, Kishi S (2009) Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol 148(1):105–10e1. https://doi.org/10.1016/j.ajo.2009.01.018. Epub 2009/03/31. PubMed PMID: 19327740

Article  PubMed  Google Scholar 

Yu J, Ye X, Li L, Jiang C, Chang Q, Xu G (2021) Threshold thickness of foveal outer nuclear layer associated with outcomes of photodynamic therapy in central serous chorioretinopathy. Eye. Epub 2021/09/05 https://doi.org/10.1038/s41433-021-01762-0

Article  PubMed  PubMed Central  Google Scholar 

Deng K, Gui Y, Cai Y, Liang Z, Shi X, Sun Y et al (2021) Changes in the foveal outer nuclear layer of Central Serous Chorioretinopathy patients over the Disease Course and their response to photodynamic therapy. Front Med 8:824239 Epub 2022/02/01. https://doi.org/10.3389/fmed.2021.824239

Article  Google Scholar 

Yu J, Lei Y, Chang Q, Xu G, Ye X, Li L et al (2019) The relationship between foveal outer nuclear layer thickness in the active and resolved phases of central serous chorioretinopathy treated with half-dose photodynamic therapy. BMC Ophthalmol 19(1):84 Epub 2019/03/30. https://doi.org/10.1186/s12886-019-1089-y

Article  PubMed  PubMed Central  Google Scholar 

Mrejen S, Balaratnasingam C, Kaden TR, Bottini A, Dansingani K, Bhavsar KV et al (2019) Long-term visual outcomes and causes of Vision loss in Chronic Central Serous Chorioretinopathy. Ophthalmology 126(4):576–588 Epub 2019/01/20. https://doi.org/10.1016/j.ophtha.2018.12.048

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif