Lidocaine Inhibits Rat Prostate Cancer Cell Invasiveness and Voltage-Gated Sodium Channel Expression in Plasma Membrane

Badwe RA, Parmar V, Nair N, Joshi S, Hawaldar R, Pawar S, Kadayaprath G, Borthakur BB, Rao Thammineedi S, Pandya S, Balasubramanian S, Chitale PV, Neve R, Harris C, Srivastava A, Siddique S, Vanmali VJ, Dewade A, Gaikwad V, Gupta S (2023) Effect of peritumoral infiltration of local anesthetic before surgery on survival in early breast cancer. J Clin Oncol 41(18):3318–3328. https://doi.org/10.1200/JCO.22.01966

Article  CAS  PubMed  Google Scholar 

Besson P, Driffort V, Bon É, Gradek F, Chevalier S, Roger S (2015) How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells? Biochim Biophys Acta 1848(10 Pt B):2493–2501. https://doi.org/10.1016/j.bbamem.2015.04.013

Article  CAS  PubMed  Google Scholar 

Brackenbury WJ, Djamgoz MBA (2006) Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol 573:343–356. https://doi.org/10.1113/jphysiol.2006.106906

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarkson CW, Follmer CH, Ten Eick RE, Hondeghem LM, Yeh JZ (1988) Evidence for two components of sodium channel block by lidocaine in isolated cardiac myocytes. Circ Res 63(5):869–878. https://doi.org/10.1161/01.res.63.5.869

Article  CAS  PubMed  Google Scholar 

Diss JK, Fraser SP, Djamgoz MBA (2004) Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 33(3):180–193. https://doi.org/10.1007/s00249-004-0389-0

Article  CAS  PubMed  Google Scholar 

Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, Djamgoz MBA (2005) A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 8(3):266–273. https://doi.org/10.1038/sj.pcan.4500796

Article  CAS  PubMed  Google Scholar 

Djamgoz MBA (2022) Combinatorial therapy of cancer: possible advantages of involving modulators of ionic mechanisms. Cancers 14(11):2703. https://doi.org/10.3390/cancers14112703

Article  CAS  PubMed  PubMed Central  Google Scholar 

Djamgoz MBA, Fraser SP, Brackenbury WJ (2019) In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers 11(11):1675. https://doi.org/10.3390/cancers11111675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dumaine R, Kirsch GE (1998) Mechanism of lidocaine block of late current in long Q-T mutant Na+ channels. Am J Physiol 274(2):H477–H487. https://doi.org/10.1152/ajpheart.1998.274.2.H477

Article  CAS  PubMed  Google Scholar 

Filippou P, Ferguson JE 3rd, Nielsen ME (2016) Epidemiology of prostate and testicular cancer. Semin Intervent Radiol 33(3):182–185. https://doi.org/10.1055/s-0036-1586146

Article  PubMed  PubMed Central  Google Scholar 

Forget P, Aguirre JA, Bencic I et al (2019) How anesthetic, analgesic and other non-surgical techniques during cancer surgery might affect postoperative oncologic outcomes: a summary of current state of evidence. Cancers 11(5):592. https://doi.org/10.3390/cancers11050592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraser SP, Diss JK, Chioni AM et al (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11(15):5381–5389. https://doi.org/10.1158/1078-0432.CCR-05-0327

Article  CAS  PubMed  Google Scholar 

Fraser SP, Salvador V, Manning EA et al (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195:479–87. https://doi.org/10.1002/jcp.10312

Article  CAS  PubMed  Google Scholar 

Gao CF, Xie Q, Su YL et al (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102(30):10528–10533. https://doi.org/10.1073/pnas.0504367102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grimes JA, Fraser SP, Stephens GJ et al (1995) Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Letters 369:290–294

Article  CAS  PubMed  Google Scholar 

Guzel RM, Ogmen K, Ilieva KM, Fraser SP, Djamgoz MBA (2019) Colorectal cancer invasiveness in vitro: predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol 234(5):6582–6593. https://doi.org/10.1002/jcp.27399

Article  CAS  PubMed  Google Scholar 

Hoffmann C, Mao X, Brown-Clay J et al (2018) Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci Rep 8(1):10191. https://doi.org/10.1038/s41598-018-28637-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hongo K, Tsuno NH, Kawai K et al (2013) Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res 182(1):75–84. https://doi.org/10.1016/j.jss.2012.08.034

Article  CAS  PubMed  Google Scholar 

Iwasaki K, Ninomiya R, Shin T et al (2018) Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1. Cancer Sci 109(10):3159–3170. https://doi.org/10.1111/cas.13754

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JE, Shin SH, Shin HW, Chun YS, Park JW (2019) Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci Rep 9(1):3480. https://doi.org/10.1038/s41598-019-39843-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemoine A, Witdouck A, Beloeil H, Bonnet F (2021) PROSPECT guidelines update for evidence-based pain management after prostatectomy for cancer. Anaesth Crit Care Pain Med 40(4):100922. https://doi.org/10.1016/j.accpm.2021.100922

Article  PubMed  Google Scholar 

Li R, Xiao C, Liu H, Huang Y, Dilger JP, Lin J (2018) Effects of local anaesthetics on breast cancer cell viability and migration. BMC Cancer 18(1):666. https://doi.org/10.1186/s12885-018-4576-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin WH, Baines RA (2015) Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Mol Neurobiol 51(1):57–67. https://doi.org/10.1007/s12035-014-8674-0

Article  CAS  PubMed  Google Scholar 

Liu HL, Liu D, Ding GR, Liao PF, Zhang JW (2015) Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells. Mol Med Rep 12(3):3365–3373. https://doi.org/10.3892/mmr.2015.3812

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Jiang F, Yu LY, Wu YY (2022) Lidocaine represses proliferation and cisplatin resistance in cutaneous squamous cell carcinoma via miR-30c/SIRT1 regulation. Bioengineered 13(3):6359–6370. https://doi.org/10.1080/21655979.2022.2031419

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y (2010) In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res 70(10):3905–3914. https://doi.org/10.1158/0008-5472.CAN-09-3739

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matos AC, Marques IA, Pires AS, Valentim A, Abrantes AM, Botelho MF (2022) The potential effect of lidocaine, ropivacaine, levobupivacaine and morphine on breast cancer pre-clinical models: a systematic review. Int J Mol Sci 23(3):1894. https://doi.org/10.3390/ijms23031894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH (2023) The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 50(4):3873–3884. https://doi.org/10.1007/s11033-023-08251-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz-Nájar UM, Neurath KM, Vumbaca F, Claffey KP (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25(16):2379–2392. https://doi.org/10.1038/sj.onc.1209273

Article  CAS  PubMed  Google Scholar 

Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471(3):157–164. https://doi.org/10.1016/s0014-2999(03)01825-9

Article  CAS  PubMed  Google Scholar 

Ranasinghe WKB, Baldwin GS, Bolton D, Shulkes A, Ischia J, Patel O (2015) HIF1α expression under normoxia in prostate cancer - Which pathways to target? J Urol 193(3):763–770. https://doi.org/10.1016/j.juro.2014.10.085

Article  CAS  PubMed 

留言 (0)

沒有登入
gif