Akemann, W., & Knöpfel, T. (2006). Interaction of kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of purkinje neurons. Journal of Neuroscience, 26(17), 4602–4612.
Article CAS PubMed Google Scholar
Akemann, W., Lundby, A., Mutoh, H., & Knöpfel, T. (2009). Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophysical Journal, 96(10), 3959–3976.
Article CAS PubMed PubMed Central ADS Google Scholar
Amir, R., & Devor, M. (2003a). Electrical excitability of the soma of sensory neurons is required for spike invasion of the soma, but not for through-conduction. Biophysical Journal, 84(4), 2181–2191.
Article CAS PubMed PubMed Central ADS Google Scholar
Amir, R., & Devor, M. (2003b). Extra spike formation in sensory neurons and the disruption of afferent spike patterning. Biophysical Journal, 84(4), 2700–2708.
Article CAS PubMed PubMed Central ADS Google Scholar
Andersson, K.-E. (2002). Bladder activation: afferent mechanisms. Urology, 59(5), 43–50. https://doi.org/10.1016/s0090-4295(01)01637-5
Andersson, K.-E., & Arner, A. (2004). Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiological Reviews, 84(3), 935–986.
Article CAS PubMed Google Scholar
Apodaca, G., Kiss, S., Ruiz, W., Meyers, S., Zeidel, M., & Birder, L. (2003). Disruption of bladder epithelium barrier function after spinal cord injury. American Journal of Physiology-Renal Physiology, 284(5), 966–976. https://doi.org/10.1152/ajprenal.00359.2002
Aruljothi, S., Mandge, D., Manchanda, R. (2017). A biophysical model of heat sensitivity in nociceptive c-fiber neurons. In: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 596–599. IEEE
Baker, M. D. (2005). Protein kinase c mediates up-regulation of tetrodotoxin-resistant, persistent na+ current in rat and mouse sensory neurones. The Journal of Physiology, 567(3), 851–867.
Article CAS PubMed PubMed Central Google Scholar
Baumbauer, K. M., DeBerry, J. J., Adelman, P. C., Miller, R. H., Hachisuka, J., Lee, K. H., Ross, S. E., Koerber, H. R., Davis, B. M., & Albers, K. M. (2015). Keratinocytes can modulate and directly initiate nociceptive responses. Elife, 4, 09674.
Birder, L. A., & Groat, W. C. (2007). Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nature Clinical Practice Urology, 4(1), 46–54. https://doi.org/10.1038/ncpuro0672
Article CAS PubMed PubMed Central Google Scholar
Bischoff, U., Vogel, W., & Safronov, B. V. (1998). Na+-activated k+ channels in small dorsal root ganglion neurones of rat. The Journal of Physiology, 510(3), 743–754.
Article CAS PubMed PubMed Central Google Scholar
Black, J. A., Cummins, T. R., Yoshimura, N., Groat, W. C., & Waxman, S. G. (2003). Tetrodotoxin-resistant sodium channels nav1. 8/sns and nav1. 9/nan in afferent neurons innervating urinary bladder in control and spinal cord injured rats. Brain Research, 963(1–2), 132–138.
Article CAS PubMed Google Scholar
Chambers, J. D., Bornstein, J. C., Gwynne, R. M., Koussoulas, K., & Thomas, E. A. (2014). A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. American Journal of Physiology-Gastrointestinal and Liver Physiology, 307(5), 517–532.
Choi, J.-S., & Waxman, S. G. (2011). Physiological interactions between nav1. 7 and nav1. 8 sodium channels: a computer simulation study. Journal of Neurophysiology, 106(6), 3173–3184.
DeBerry, J., Albers, K., & Davis, B. (2013). Bladder hypersensitivity and transcriptional regulation of potassium channel subunit mrna expression in mice with cystitis. The Journal of Pain, 14(4), 57.
Du, X., Hao, H., Gigout, S., Huang, D., Yang, Y., Li, L., Wang, C., Sundt, D., Jaffe, D. B., Zhang, H., et al. (2014). Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission. PAIN®, 155(11), 2306–2322.
Article CAS PubMed Google Scholar
Fowler, C. J., Griffiths, D., & De Groat, W. C. (2008). The neural control of micturition. Nature Reviews Neuroscience, 9(6), 453–466.
Article CAS PubMed PubMed Central Google Scholar
Fox, A., Nowycky, M., & Tsien, R. (1987). Single-channel recordings of three types of calcium channels in chick sensory neurones. The Journal of Physiology, 394(1), 173–200.
Article CAS PubMed PubMed Central Google Scholar
Fukumoto, N., Kitamura, N., Niimi, K., Takahashi, E., Itakura, C., & Shibuya, I. (2012). Ca2+ channel currents in dorsal root ganglion neurons of p/q-type voltage-gated ca2+ channel mutant mouse, rolling mouse nagoya. Neuroscience Research, 73(3), 199–206.
Article CAS PubMed Google Scholar
Groat, W. C., Yoshimura, N. (2009). Afferent nerve regulation of bladder function in health and disease. Sensory Nerves, 91–138.
Groat, W. C., Griffiths, D., & Yoshimura, N. (2015). Neural control of the lower urinary tract. Comprehensive Physiology, 5(1), 327.
PubMed PubMed Central Google Scholar
Han, C., Estacion, M., Huang, J., Vasylyev, D., Zhao, P., Dib-Hajj, S. D., & Waxman, S. G. (2015). Human nav1. 8: enhanced persistent and ramp currents contribute to distinct firing properties of human drg neurons. Journal of Neurophysiology, 113(9), 3172–3185.
Article CAS PubMed PubMed Central Google Scholar
Hayashi, Y., Takimoto, K., Chancellor, M. B., Erickson, K. A., Erickson, V. L., Kirimoto, T., Nakano, K., Groat, W. C., & Yoshimura, N. (2009). Bladder hyperactivity and increased excitability of bladder afferent neurons associated with reduced expression of kv1. 4 \(\alpha\)-subunit in rats with cystitis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(5), 1661–1670.
Hilaire, C., Diochot, S., Desmadryl, G., Richard, S., & Valmier, J. (1997). Toxin-resistant calcium currents in embryonic mouse sensory neurons. Neuroscience, 80(1), 267–276.
Article CAS PubMed Google Scholar
Hines, M. L., & Carnevale, N. T. (1997). The neuron simulation environment. Neural Computation, 9(6), 1179–1209.
Article CAS PubMed Google Scholar
Hodgkin, A. L., & Rushton, W. A. H. (1946). The electrical constants of a crustacean nerve fibre. Proceedings of the Royal Society B, 133, 444–479.
Hougaard, C., Fraser, M., Chien, C., Bookout, A., Katofiasc, M., Jensen, B., Rode, F., Bitsch-Nørhave, J., Teuber, L., Thor, K., et al. (2009). A positive modulator of kca2 and kca3 channels, 4, 5-dichloro-1, 3-diethyl-1, 3-dihydro-benzoimidazol-2-one (ns4591), inhibits bladder afferent firing in vitro and bladder overactivity in vivo. Journal of Pharmacology and Experimental Therapeutics, 328(1), 28–39.
Article CAS PubMed Google Scholar
Kanda, H., Clodfelder-Miller, B. J., Gu, J. G., Ness, T. J., & DeBerry, J. J. (2016). Electrophysiological properties of lumbosacral primary afferent neurons innervating urothelial and non-urothelial layers of mouse urinary bladder. Brain Research, 1648, 81–89.
Article CAS PubMed PubMed Central Google Scholar
Kovalsky, Y., Amir, R., & Devor, M. (2009). Simulation in sensory neurons reveals a key role for delayed na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. Journal of Neurophysiology, 102(3), 1430–1442.
Article CAS PubMed Google Scholar
Lei, Q., Pan, X.-Q., Villamor, A. N., Asfaw, T. S., Chang, S., Zderic, S. A., & Malykhina, A. P. (2013). Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways. Journal of Neuroinflammation, 10(1), 1–18.
Mandge, D., & Manchanda, R. (2018). A biophysically detailed computational model of bladder small drg neuron soma. PLoS Computational Biology, 14(7), 1006293.
Masoli, S., Solinas, S., & D’Angelo, E. (2015). Action potential processing in a detailed purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in Cellular Neuroscience, 9, 47.
Article PubMed PubMed Central Google Scholar
Matsuyoshi, H., Masuda, N., Chancellor, M. B., Erickson, V. L., Hirao, Y., Groat, W. C., Wanaka, A., & Yoshimura, N. (2006). Expression of hyperpolarization-activated cyclic nucleotide-gated cation channels in rat dorsal root ganglion neurons innervating urinary bladder. Brain Research, 1119(1), 115–123.
Article CAS PubMed Google Scholar
Medlock, L., Sekiguchi, K., Hong, S., Dura-Bernal, S., Lytton, W. W., & Prescott, S. A. (2022). Multiscale computer model of the spinal dorsal horn reveals changes in network processing associated with chronic pain. Journal of Neuroscience, 42(15), 3133–3149.
Article CAS PubMed Google Scholar
Merrill, L., Gonzalez, E. J., Girard, B. M., & Vizzard, M. A. (2016). Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nature Reviews Urology, 13(4), 193–204.
Article CAS PubMed PubMed Central Google Scholar
Nickel, J. C., Jain, P., Shore, N., Anderson, J., Giesing, D., Lee, H., Kim, G., Daniel, K., White, S., Larrivee-Elkins, C., et al. (2012). Continuous intravesical lidocaine treatment for interstitial cystitis/bladder pain syndrome: safety and efficacy of a new drug delivery device. Science Translational Medicine, 4(143), 143–100143100.
Passmore, G. M., Selyanko, A. A., Mistry, M., Al-Qatari, M., Marsh, S. J., Matthews, E. A., Dickenson, A. H., Brown, T. A., Burbidge, S. A., Main, M., et al. (2003). Kcnq/m currents in sensory neurons: significance for pain therapy. Journal of Neuroscience, 23(18), 72
Comments (0)