Interrelationship of Sarcopenia and Cardiovascular Diseases

Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–46. https://pubmed.ncbi.nlm.nih.gov/31171417. https://doi.org/10.1016/S0140-6736(19)31138-9.

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://pubmed.ncbi.nlm.nih.gov/30312372. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322506. https://doi.org/10.1093/ageing/afy169.

Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. https://pubmed.ncbi.nlm.nih.gov/24461239. https://doi.org/10.1016/j.jamda.2013.11.025.

von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129-33. https://pubmed.ncbi.nlm.nih.gov/21475695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060646. https://doi.org/10.1007/s13539-010-0014-2.

Tyrovolas S, Haro JM, Mariolis A, et al. Skeletal muscle mass and body fat in relation to successful ageing of older adults: The multi-national MEDIS study. Archives of Gerontology and Geriatrics. 2016;66:95–101. https://pubmed.ncbi.nlm.nih.gov/27266673. https://doi.org/10.1016/j.archger.2016.04.017.

Chin SO, Rhee SY, Chon S, et al. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: The Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS ONE. 2013;8(3):e60119. https://pubmed.ncbi.nlm.nih.gov/23533671. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606314. https://doi.org/10.1371/journal.pone.0060119.

He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship between sarcopenia and cardiovascular diseases in the elderly: An overview. Front Cardiovasc Med. 2021;8:743710. https://pubmed.ncbi.nlm.nih.gov/34957238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695853. https://doi.org/10.3389/fcvm.2021.743710.

Gao K, Cao LF, Ma WZ, et al. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: Findings from the China Health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264.

Sasaki K-ichiro, Kakuma T, Sasaki M, Ishizaki Y, Fukami A, Enomoto M, et al. The prevalence of sarcopenia and subtypes in cardiovascular diseases, and a new diagnostic approach. Journal of Cardiology. 2020;76(3):266–72. https://pubmed.ncbi.nlm.nih.gov/35059617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8760427. https://doi.org/10.1016/j.eclinm.2021.101264.

Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Research Reviews. 2017;35:200–21. https://pubmed.ncbi.nlm.nih.gov/27702700. https://doi.org/10.1016/j.arr.2016.09.008.

Heo JE, Kim HC, Shim J-S, et al. Association of appendicular skeletal muscle mass with carotid intima-media thickness according to body mass index in Korean adults. Epidemiol Health. 2018;40:e2018049. https://pubmed.ncbi.nlm.nih.gov/30336662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288657. https://doi.org/10.4178/epih.e2018049.

Piotrowicz K, Gryglewska B, Grodzicki T, Gąsowski J. Arterial stiffness and frailty - a systematic review and metaanalysis. Exp Gerontology. 2021;153:111480. https://pubmed.ncbi.nlm.nih.gov/34265411. https://doi.org/10.1016/j.exger.2021.111480.

Amarasekera AT, Chang D, Schwarz P, Tan TC. Does vascular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age Ageing. 2021;50(3):725-32. https://pubmed.ncbi.nlm.nih.gov/33951149. https://doi.org/10.1093/ageing/afaa237

Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2016;965:511–40. https://pubmed.ncbi.nlm.nih.gov/28035582. https://doi.org/10.1007/5584_2016_90.

Zhang N, Zhu WL, Liu XH, et al. Prevalence and prognostic implications of sarcopenia in older patients with coronary heart disease. J Geriatr Cardiol. 2019;16(10):756-63. https://pubmed.ncbi.nlm.nih.gov/31700515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828602. https://doi.org/10.11909/j.issn.1671-5411.2019.10.002.

Xia M-F, Chen L-Y, Wu L, et al. Sarcopenia, sarcopenic overweight/obesity and risk of cardiovascular disease and Cardiac arrhythmia: A cross-sectional study. Clin Nutr. 2021;40(2):571–80. https://pubmed.ncbi.nlm.nih.gov/32593523. https://doi.org/10.1016/j.clnu.2020.06.003.

Santana Nde, Mendes RM, Silva NF, Pinho CP. Sarcopenia and sarcopenic obesity as prognostic predictors in hospitalized elderly patients with acute myocardial infarction. Einstein (São Paulo). 2019;17(4):eAO4632. https://pubmed.ncbi.nlm.nih.gov/31433007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6706224. https://doi.org/10.31744/einstein_journal/2019AO4632.

Kim CH, Rhee TM, Park KW, et al. Association between low muscle mass and prognosis of patients with coronary artery disease undergoing percutaneous coronary intervention. J Am Heart Assoc. 2021;10(1):e018554. https://pubmed.ncbi.nlm.nih.gov/33372526. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955465. https://doi.org/10.1161/JAHA.120.018554.

Leenders M, Verdijk LB, van der Hoeven L, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92. https://pubmed.ncbi.nlm.nih.gov/23537893. https://doi.org/10.1016/j.jamda.2013.02.006.

Morley JE, Malmstrom TK, Rodriguez-Mañas L, Sinclair AJ. Frailty, sarcopenia and diabetes. J Am Med Dir Assoc. 2014;15(12):853–9. https://pubmed.ncbi.nlm.nih.gov/25455530. https://doi.org/10.1016/j.jamda.2014.10.001.

Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced glycation end-products in skeletal muscle aging. Bioengineering (Basel). 2021;8(11):168. https://pubmed.ncbi.nlm.nih.gov/34821734. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614898. https://doi.org/10.3390/bioengineering8110168.

Fulster S, Tacke M, Sandek A, et al. Muscle wasting in patients with chronic heart failure: Results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2012;34(7):512–9. https://pubmed.ncbi.nlm.nih.gov/23178647. https://doi.org/10.1093/eurheartj/ehs381.

Dick SA, Epelman S. Chronic heart failure and inflammation. Circ Res. 2016;119(1):159–76. https://pubmed.ncbi.nlm.nih.gov/27340274. https://doi.org/10.1161/CIRCRESAHA.116.308030.

Costamagna D, Costelli P, Sampaolesi M, Penna F. Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm. 2015;2015:805172. https://pubmed.ncbi.nlm.nih.gov/26508819. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609834. htpps://doi.org/10.1155/2015/805172.

Reiss AB, Siegart NM, De Leon J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin Lipidol. 2017;12(1):14–23. https://doi.org/10.1080/17584299.2017.1319787.

Tap L, Kirkham FA, Mattace-Raso F, Joly L, Rajkumar C, Benetos A. Unraveling the links underlying arterial stiffness, bone demineralization, and muscle loss. Hypertension. 2020;76(3):629–39. https://pubmed.ncbi.nlm.nih.gov/32755468. https://doi.org/10.1161/HYPERTENSIONAHA.120.15184.

Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2020;18(1):58–68. https://pubmed.ncbi.nlm.nih.gov/32918047. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484613. https://doi.org/10.1038/s41569-020-0431-7.

Yoon S-K, Kim H-N, Song S-W. Associations of skeletal muscle mass with atherosclerosis and inflammatory markers in Korean adults. Arch Gerontol Geriatr. 2020;90:104163. https://pubmed.ncbi.nlm.nih.gov/32629371. https://doi.org/10.1016/j.archger.2020.104163.

Curcio F, Testa G, Liguori I, et al. Sarcopenia and heart failure. Nutrients. 2020;12(1):211. https://pubmed.ncbi.nlm.nih.gov/31947528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019352. https://doi.org/10.3390/nu12010211.

McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol. 2009;6(6):410–7. https://pubmed.ncbi.nlm.nih.gov/19421244. https://doi.org/10.1038/nrcardio.2009.57.

Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia. Frontiers in Physiology. 2017;8:1045. https://pubmed.ncbi.nlm.nih.gov/29311975. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733049. https://doi.org/10.3389/fphys.2017.01045.

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927356. https://doi.org/10.2147/CIA.S158513.

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181-90. https://pubmed.ncbi.nlm.nih.gov/21949114. https://doi.org/10.1152/ajpheart.00554.2011.

Giannitsi S, Maria B, Bechlioulis A, Naka K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis. 2019;8:204800401984304. https://pubmed.ncbi.nlm.nih.gov/31007907. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460884. https://doi.org/10.1177/2048004019843047.

dos Santos MR, Saitoh M, Ebner N, et al. Sarcopenia and endothelial function in patients with chronic heart failure: Results from the studies investigating comorbidities aggravating heart failure (SICA-HF). J Am Med Dir Assoc. 2017;18(3):240–5. https://pubmed.ncbi.nlm.nih.gov/27816483. https://doi.org/ 10.1016/j.jamda.2016.09.006.

Lena A, Anker MS, Springer J. Muscle wasting and sarcopenia in heart failure—the current state of science. Int J Mol Sci. 2020;21(18):6549. https://pubmed.ncbi.nlm.nih.gov/32911600. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555939. https://doi.org/10.3390/ijms21186549.

Feike Y, Zhijie L, Wei C. Advances in research on pharmacotherapy of sarcopenia. Aging Med (Milton). 2021;4(3):221-33. https://pubmed.ncbi.nlm.nih.gov/34553120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444957. https://doi.org/10.1002/agm2.12168.

Kim YS, Sainz RD, Summers RJ, Molenaar P. Cimaterol reduces β-adrenergic receptor density in rat skeletal muscles. J Anim Sci. 1992;70(1):115–22. https://pubmed.ncbi.nlm.nih.gov/1374751. https://doi.org/10.2527/1992.701115x.

Fonseca GWPD, Santos MRD, Souza FR, et al. Sympatho-vagal imbalance is associated with sarcopenia in male patients with heart failure. Arq Bras Cardiol. 2019;112(6):739-46. https://pubmed.ncbi.nlm.nih.gov/30970141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636362. https://doi.org/10.5935/abc.20190061.

Kontoleon PE, Anastasiou-Nana MI, Papapetrou PD, Alexopoulos G, Ktenas V, Rapti AC, et al. Hormonal profile in patients with congestive heart failure. International Journal of Cardiology. 2003;87(2-3):179–83.

Cicoira M, Kalra PR, Anker SD. Growth hormone resistance in chronic heart failure and its therapeutic implications. Journal of Cardiac Failure. 2003;9(3):219–26.

Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: Local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol. 2011;300(6):H1973-82. https://pubmed.ncbi.nlm.nih.gov/21421824. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119101. https://doi.org/10.1152/ajpheart.00200.2011.

Sharma M, Kambadur R, Matthews KG, et al. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol. 1999;180(1):1-9. https://pubmed.ncbi.nlm.nih.gov/10362012. https://doi.org/10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V.

Gruson D, Ahn SA, Ketelslegers JM, Rousseau MF. Increased plasma myostatin in heart failure. Eur J Heart Fail. 2011;13(7):734-6. https://pubmed.ncbi.nlm.nih.gov/21467027. https://doi.org/10.1093/eurjhf/hfr024.

Amare H, Hamza L, Asefa H. Malnutrition and associated factors among heart failure patients on follow up at Jimma University Specialized Hospital, Ethiopia. BMC Cardiovasc Disord. 2015;15(1):128. https://pubmed.ncbi.nlm.nih.gov/26471898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608297. https://doi.org/10.1186/s12872-015-0111-4.

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39(4):412–23. https://pubmed.ncbi.nlm.nih.gov/20392703. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886201. https://doi.org/10.1093/ageing/afq034.

Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: Etiology, clinical consequences, intervention, and assessment. Osteoporosis Int. 2009;21(4):543–59. https://pubmed.ncbi.nlm.nih.gov/19779761. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832869. https://doi.org/10.1007/s00198-009-1059-y.

Barbat-Artigas S, Pion CH, Leduc-Gaudet J-P, Rolland Y, Aubertin-Leheudre M. Exploring the role of Muscle Mass, obesity, and age in the relationship between muscle quality and physical function. Journal of the American Medical Directors Association. 2014;15(4).

Tian S, Xu Y. Association of sarcopenic obesity with the risk of all-cause mortality: A meta-analysis of prospective cohort studies. Geriatr Gerontol Int. 2015;16(2):155–66. https://pubmed.ncbi.nlm.nih.gov/26271226. https://doi.org/10.1111/ggi.12579.

Pu CT, Johnson MT, Forman DE, et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol. 2001;90(6):2341–50. https://pubmed.ncbi.nlm.nih.gov/11356801. https://doi.org/10.1152/jappl.2001.90.6.2341.

Malmstrom TK, Morley JE. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc. 2013;14(8):531–2. https://pubmed.ncbi.nlm.nih.gov/23810110. https://doi.org/10.1016/j.jamda.2013.05.018.

Barbosa-Silva TG, Menezes AM, Bielemann RM, Malmstrom TK, Gonzalez MC, COCONUT. Enhancing SARC-F: improving sarcopenia screening in the clinical practice. J Am Med Dir Assoc. 2016;17(12):1136-41. https://pubmed.ncbi.nlm.nih.gov/27650212. https://doi.org/10.1016/j.jamda.2016.08.004.

Dhillon RJS, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. https://pubmed.ncbi.nlm.nih.gov/27886695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127276. https://doi.org/10.1016/j.cger.2016.08.002.

Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300-7. https://pubmed.ncbi.nlm.nih.gov/32033882. https://doi.org/10.1016/j.jamda.2019.12.012.

Marzetti E, Calvani R, DuPree J, et al. Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle. AGE. 2012;35(4):1061–75. https://pubmed.ncbi.nlm.nih.gov/22639176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705103. https://doi.org/10.1007/s11357-012-9428-4.

Loh DR, Tan RS, Lim WS, Koh AS. Cardio-sarcopenia: A syndrome of concern in aging. Front Med (Lausanne). 2022;9:1027466. https://pubmed.ncbi.nlm.nih.gov/36388892. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640679. https://doi.org/10.3389/fmed.2022.1027466.

Caulfield L, Heslop P, Walesby KE, Sumukadas D, Sayer AA, Witham MD. Effect of angiotensin system inhibitors on physical performance in older people – a systematic review and meta-analysis. J Am Med Dir Assoc. 2021;22(6):1215-21.e2. https://pubmed.ncbi.nlm.nih.gov/32859513. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189253. https://doi.org/10.1016/j.jamda.2020.07.012.

Burnier M, Egan BM. Adherence in hypertension. Circ Res. 2019;124(7):1124–40. https://pubmed.ncbi.nlm.nih.gov/30920917. https://doi.org/10.1161/CIRCRESAHA.118.313220.

Burks TN, Andres-Mateos E, Marx R, et al. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci Transl Med. 2011;3(82):82ra37. https://pubmed.ncbi.nlm.nih.gov/21562229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140459. https://doi.org/10.1126/scitranslmed.3002227.

Lin CH, Chang PC, Chu PH, Chuang YF, Huang RC, Chen CN. Effects of losartan and exercise on muscle mass and exercise endurance of old mice. Exp Gerontol. 2022;165:111869. https://pubmed.ncbi.nlm.nih.gov/35710057. https://doi.org/10.1016/j.exger.2022.111869.

Ng TP, Nguyen TN, Gao Q, Nyunt MS, Yap KB, Wee SL. Angiotensin receptor blockers use and changes in frailty, muscle mass, and function indexes: Singapore Longitudinal Ageing Study. JCSM Rapid Communications. 2021;4(2):111–21. https://doi.org/10.1002/rco2.31.

Lee JL, Zhang C, Westbrook R, et al. Serum concentrations of losartan metabolites correlate with improved physical function in a pilot study of prefrail older adults. J Gerontol A Biol Sci Med Sci. 2022;77(12):2356–66. https://pubmed.ncbi.nlm.nih.gov/35511890. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799219. https://doi.org/10.1093/gerona/glac102.

Bea JW, Wassertheil-Smoller S, Wertheim BC, et al. Associations between ACE-inhibitors, angiotensin receptor blockers, and lean body mass in community dwelling older women. J Aging Res. 2018:8491092.

https://pubmed.ncbi.nlm.nih.gov/29670769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836326. https://doi.org/10.1155/2018/8491092.

Burniston J, Saini A, Tan L, Goldspink D. Aldosterone induces myocyte apoptosis in the heart and skeletal muscles of rats in vivo. J Mol Cell Cardiol. 2005;39(2):395–9. https://pubmed.ncbi.nlm.nih.gov/15907929. https://doi.org/10.1016/j.yjmcc.2005.04.001.

Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation. 2000;101(6):594–7. https://pubmed.ncbi.nlm.nih.gov/10673249. https://doi.org/10.1161/01.cir.101.6.594.

Edelmann F, Wachter R, Schmidt AG, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction. JAMA. 2013;309(8):781. https://pubmed.ncbi.nlm.nih.gov/23443441. https://doi.org/10.1001/jama.2013.905.

Burton LA, Sumukadas D, Witham MD, Struthers AD, McMurdo MET. Effect of spironolactone on physical performance in older people with self-reported physical disability. Am J Med. 2013;126(7):590–7. https://pubmed.ncbi.nlm.nih.gov/23706520. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695565. https://doi.org/10.1016/j.amjmed.2012.11.032.

Lim SY. Role of statins in coronary artery disease. Chonnam Med J. 2013;49(1):1–6. https://pubmed.ncbi.nlm.nih.gov/23678470. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651980. https://doi.org/10.4068/cmj.2013.49.1.1.

Sahebkar A, Cicero AFG, Di Giosia P, et al. Pathophysiological mechanisms of statin-associated myopathies: Possible role of the ubiquitin-proteasome system. J Cachexia Sarcopenia Muscle. 2020;11(5):1177–86. https://pubmed.ncbi.nlm.nih.gov/32743965. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567138. https://doi.org/10.1002/jcsm.12579.

Harada, H, Nishiyama, Y, Niiyama, H, Katoh, A, Kai, H. Angiotensin II receptor blocker and statin combination therapy associated with higher skeletal muscle index in patients with cardiovascular disease: A retrospective study. J Clin Pharm Ther. 2022;47(1):89–96. https://pubmed.ncbi.nlm.nih.gov/34668212. https://doi.org/10.1111/jcpt.13540.

Valdiviesso R, Sousa-Santos AR, Azevedo LF, et al. Statins are associated with reduced likelihood of sarcopenia in a sample of heart failure outpatients: A cross-sectional study. BMC Cardiovasc Disord. 2022;22(1):356. https://pubmed.ncbi.nlm.nih.gov/35931947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354359. https://doi.org/10.1186/s12872-022-02804-5.

Clark AL, Coats AJS, Krum H, et al. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: Results from the Copernicus trial. J Cachexia Sarcopenia Muscle. 2017;8(4):549–56. https://pubmed.ncbi.nlm.nih.gov/28244261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566644. https://doi.org10.1002/jcsm.12191.

Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with beta blockers: A pilot study. Int J Cardiol. 2006;106(3):319–22. https://pubmed.ncbi.nlm.nih.gov/16337039. https://doi.org/10.1016/j.ijcard.2005.01.061.

Bian A, Ma Y, Zhou X, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disord. 2020;21(1):214. https://pubmed.ncbi.nlm.nih.gov/32264885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140321. https://doi.org/10.1186/s12891-020-03236-y.

Onder G, Liperoti R, Russo A, et al. Body mass index, free insulin-like growth factor I, and physical function among older adults: Results from the IlSIRENTE study. Am J Physiol Endocrinol Metab. 2006;291(4).

Caminiti G, Volterrani M, Iellamo F, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure. J Am Coll Cardiol. 2009;54(10):919–27. https://pubmed.ncbi.nlm.nih.gov/19712802. https://doi.org/10.1016/j.jacc.2009.04.078.

Pugh PJ, Jones RD, West JN, Jones TH, Channer KS. Testosterone treatment for men with chronic heart failure. Heart. 2004;90(4):446–7. https://pubmed.ncbi.nlm.nih.gov/15020527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1768161. https://doi.org/10.1136/hrt.2003.014639.

Neil D, Clark RV, Magee M, Billiard J, Chan A, Xue Z, et al. GSK2881078, a SARM, produces dose-dependent increases in lean mass in healthy older men and women. J Clin Endocrinol Metab.2018;103(9):3215–24. https://pubmed.ncbi.nlm.nih.gov/29982690. https://doi.org/10.1210/jc.2017-02644.

Chisamore MJ, Gentile MA, Dillon GM, Baran M, Gambone C, Riley S, et al. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R–3327G and anabolic activity on skeletal muscle mass & function in castrated mice. J Steroid Biochem Mol Biol. 2016;163:88–97. https://pubmed.ncbi.nlm.nih.gov/27106747. https://doi.org/10.1016/j.jsbmb.2016.04.007.

Barazzoni R, Cappellari GG, Palus S, et al. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and Akt phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle. 2017;8(6):991–8. https://pubmed.ncbi.nlm.nih.gov/29098797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700435. https://doi.org/10.1002/jcsm.12254.

Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J Am Geriatrics Soc. 2011;59(12):2291–300. https://pubmed.ncbi.nlm.nih.gov/22188076. https://doi.org/10.1111/j.1532-5415.2011.03733.x.

Murphy CH, Oikawa SY, Phillips SM. Dietary protein to maintain muscle mass in aging: A case for per-meal protein recommendations.J Frailty Aging. 2016;5(1):49-58. https://pubmed.ncbi.nlm.nih.gov/26980369. https://doi.org/10.14283/jfa.2016.80.

Deer RR, Volpi E. Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care. 2015;18(3):248–53. https://pubmed.ncbi.nlm.nih.gov/25807346. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394186. https://doi.org/10.1097/MCO.0000000000000162.

Moore DR, Churchward-Venne TA, Witard O, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2014;70(1):57–62. https://pubmed.ncbi.nlm.nih.gov/25056502. https://doi.org/10.1093/gerona/glu103.

Lancha AH, Zanella R, Tanabe SG, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids. 2016;49(1):33–47. https://pubmed.ncbi.nlm.nih.gov/27807658. https://doi.org/10.1007/s00726-016-2355-4.

Hamarsland H, Nordengen AL, Nyvik Aas S, et al. Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: a randomized controlled trial. J Int Soc Sports Nutr. 2017;14:43. https://pubmed.ncbi.nlm.nih.gov/29200982. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697397. https://doi.org/10.1186/s12970-017-0202-y.

Lowery RP, Joy JM, Rathmacher JA, et al. Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res. 2016;30(7):1843–54. https://pubmed.ncbi.nlm.nih.gov/24714541. https://doi.org/10.1519/JSC.0000000000000482.

Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J Cachexia Sarcopenia Muscle. 2017;8(4):529–41. https://pubmed.ncbi.nlm.nih.gov/28493406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566641. https://doi.org/10.1002/jcsm.12208.

Rossi AP, D’Introno A, Rubele S, et al. The potential of β-hydroxy-β-methylbutyrate as a new strategy for the management of Sarcopenia and sarcopenic obesity. Drugs Aging. 2017;34(11):833–40. https://pubmed.ncbi.nlm.nih.gov/29086232. https://doi.org/10.1007/s40266-017-0496-0.

Silva VR, Belozo FL, Micheletti TO, et al. Β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: A systematic review. Nutr Res. 2017;45:1–9. PMID: 29037326. https://doi.org/10.1016/j.nutres.2017.07.008.

Costa Riela Nde, Alvim Guimarães MM, Oliveira de Almeida D, Araujo EM. Effects of beta-hydroxy-beta-methylbutyrate supplementation on elderly body composition and muscle strength: A review of clinical trials. Ann Nutr Metab. 2021;77(1):16–22.PMID: 33709969. https://doi.org/10.1159/000514236.

Bacurau AVN, Jannig PR, de Moraes WMAM, et al. AKT/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int J Cardiol. 2016;214:137–47. https://pubmed.ncbi.nlm.nih.gov/27060274. https://doi.org/016.03.071.

Pearson MJ, Mungovan SF, Smart NA. Effect of aerobic and resistance training on inflammatory markers in heart failure patients: Systematic Review and meta-analysis. Heart Fail Rev. 2018;23(2):209–23. https://pubmed.ncbi.nlm.nih.gov/29392623. https://doi.org/10.1007/s10741-018-9677-0

Smart N, Steele M. Exercise training in hemodialysis patients: A systematic review and meta-analysis. Nephrology. 2011; 16(7):626-32. https://pubmed.ncbi.nlm.nih.gov/21557787. https://doi.org/7.2011.01471.x.

Gielen S, Sandri M, Kozarez I, et al. Exercise training attenuates MURF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age. Circulation. 2012;125(22):2716–27. https://pubmed.ncbi.nlm.nih.gov/22565934. https://doi.org/10.1161/CIRCULATIONAHA.111.047381.

Lenk K, Erbs S, Höllriegel R, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol. 2011;19(3):404–11. https://pubmed.ncbi.nlm.nih.gov/21450574. https://doi.org/10.1177/1741826711402735.

Comments (0)

No login
gif