Green tea consumption and incidence of cardiovascular disease in type 2 diabetic patients with overweight/obesity: a community-based cohort study

Nguyen HD, Oh H, Hoang NHM, Kim MS. Association between heavy metals, high-sensitivity C-reaction protein and 10-year risk of cardiovascular diseases among adult Korean population. Sci Rep. 2021;11(1):14664.

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

Article  CAS  PubMed  ADS  Google Scholar 

Colagiuri S. Diabesity: therapeutic options. Diabetes Obes Metab. 2010;12(6):463–73.

Article  CAS  PubMed  Google Scholar 

Lin CC, Li CI, Liu CS, Lin WY, Lin CH, Chiang JI, Yang SY, Li TC. Obesity paradox in associations between body mass index and diabetes-related hospitalization and mortality in patients with type 2 diabetes: retrospective cohort studies. Diabetes Metab. 2019;45(6):564–72.

Article  PubMed  Google Scholar 

Kong L, Qi Y, Ye C, Wang Y, Zhao Z, Li M, Wang S, Lin H, Xu Y, Xu M. Diabesity phenotype and the risks of cardiovascular disease and subclinical atherosclerosis: a prospective cohort study. Obes (Silver Spring). 2022;30(8):1681–90.

Article  CAS  Google Scholar 

Soh AZ, Pan A, Chee CBE, Wang YT, Yuan JM, Koh WP. Tea drinking and its association with active tuberculosis incidence among middle-aged and Elderly adults: the Singapore Chinese Health Study. Nutrients 2017, 9(6).

Chieng D, Kistler PM. Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc Med; 2021.

Mineharu Y, Koizumi A, Wada Y, Iso H, Watanabe Y, Date C, Yamamoto A, Kikuchi S, Inaba Y, Toyoshima H, et al. Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health. 2011;65(3):230–40.

Article  PubMed  Google Scholar 

Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, Zhu Y, Shi K, Ge J, Yang YJ, et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol. 2016;202:967–74.

Article  PubMed  Google Scholar 

Zhao LG, Li HL, Sun JW, Yang Y, Ma X, Shu XO, Zheng W, Xiang YB. Green tea consumption and cause-specific mortality: results from two prospective cohort studies in China. J Epidemiol. 2017;27(1):36–41.

Article  PubMed  Google Scholar 

Nie J, Yu C, Guo Y, Pei P, Chen L, Pang Y, Du H, Yang L, Chen Y, Yan S, et al. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: a cohort study of 0.5 million Chinese adults. Am J Clin Nutr. 2021;114(1):194–202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Sun X, Zheng L. No causal effect of tea consumption on cardiovascular diseases: a two-sample mendelian randomization study. Front Cardiovasc Med. 2022;9:870972.

Article  PubMed  PubMed Central  Google Scholar 

Liu X, Xu W, Cai H, Gao YT, Li H, Ji BT, Shu X, Wang T, Gerszten RE, Zheng W, et al. Green tea consumption and risk of type 2 diabetes in Chinese adults: the Shanghai women’s Health Study and the Shanghai men’s Health Study. Int J Epidemiol. 2018;47(6):1887–96.

Article  PubMed  PubMed Central  Google Scholar 

Shen C, Wen J, Pan X, Su J, Du W, Pan E, Zhang Q, Zhang N, Sheng H, Liu C, et al. Age at menarche and age at natural menopause as predictors of glycemic control in type 2 diabetic patients. J Diabetes Complications. 2018;32(7):623–9.

Article  PubMed  Google Scholar 

Miao DD, Pan EC, Zhang Q, Sun ZM, Qin Y, Wu M. Development and validation of a Model for Predicting Diabetic Nephropathy in Chinese people. Biomed Environ Sci. 2017;30(2):106–12.

CAS  PubMed  Google Scholar 

Chen Y, Yang J, Su J, Qin Y, Shen C, Li Y, Lu S, Pan E, Gao Y, Miao D, et al. Physical activity, sedentary time and their associations with clustered metabolic risk among people with type 2 diabetes in Jiangsu province: a cross-sectional study. BMJ Open. 2019;9(8):e027906.

Article  PubMed  PubMed Central  Google Scholar 

Li M, Wu M, Qin Y, Zhou J, Su J, Pan E, Zhang Q, Zhang N, Sheng H, Dong J, et al. ACTB Variants Confer the Genetic Susceptibility to Diabetic kidney disease in a Han Chinese Population. Front Genet. 2019;10:663.

Article  CAS  PubMed  PubMed Central  Google Scholar 

2. Classification and diagnosis of diabetes: standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):15–s33.

Google Scholar 

Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–167.

Article  PubMed  PubMed Central  Google Scholar 

Chen C, Zhao W, Yang X, Chen J, Li K, Zhao L, Yao C, Zhao X, Li G, Jia W. Criteria of weight for adults. Health industrial standard of the People’s Republic of China China’s State Family Planning Commission; 2013.

Boyko EJ, Ahroni JH, Stensel VL, Smith DG, Davignon DR, Pecoraro RE. Predictors of transcutaneous oxygen tension in the lower limbs of diabetic subjects. Diabet Med. 1996;13(6):549–54.

Article  CAS  PubMed  Google Scholar 

Deng W, Dong X, Zhang Y, Jiang Y, Lu D, Wu Q, Liang Z, Yang G, Chen B. Transcutaneous oxygen pressure (TcPO2): a novel diagnostic tool for peripheral neuropathy in type 2 diabetes patients. Diabetes Res Clin Pract. 2014;105(3):336–43.

Article  CAS  PubMed  Google Scholar 

Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of lipid and amphiphilic biomarkers for Disease Diagnostics. Biosens (Basel) 2017, 7(3).

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

Article  CAS  PubMed  Google Scholar 

Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose Monitoring-A review of Invasive to minimally and non-invasive techniques, devices and sensors. Sens (Basel) 2019, 19(4).

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470–5.

Article  CAS  PubMed  Google Scholar 

Dong Y, Wang X, Zhang L, Chen Z, Zheng C, Wang J, Kang Y, Shao L, Tian Y, Wang Z. High-sensitivity C reactive protein and risk of cardiovascular disease in China-CVD study. J Epidemiol Community Health. 2019;73(2):188–92.

Article  PubMed  Google Scholar 

Chen X. False discovery rate control for multiple testing based on discrete p-values. Biom J. 2020;62(4):1060–79.

Article  MathSciNet  PubMed  Google Scholar 

Glance LG, Osler TM, Mukamel DB, Meredith W, Dick AW. Impact of statistical approaches for handling missing data on trauma center quality. Ann Surg. 2009;249(1):143–8.

Article  PubMed  Google Scholar 

Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–60.

Article  CAS  PubMed  Google Scholar 

Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155(2):176–84.

Article  PubMed  Google Scholar 

VanderWeele TJ, Ding P. Sensitivity analysis in Observational Research: introducing the E-Value. Ann Intern Med. 2017;167(4):268–74.

Article  PubMed  Google Scholar 

Haneuse S, VanderWeele TJ, Arterburn D. Using the E-Value to assess the potential effect of unmeasured confounding in Observational studies. JAMA. 2019;321(6):602–3.

Article  PubMed  Google Scholar 

Li R, Li X, Wu H, Yang Z, Fei L, Zhu J. Theaflavin attenuates cerebral ischemia/reperfusion injury by abolishing miRNA–128–3p–mediated Nrf2 inhibition and reducing oxidative stress. Mol Med Rep. 2019;20(6):4893–904.

CAS  PubMed  PubMed Central  Google Scholar 

Lorenz M, Rauhut F, Hofer C, Gwosc S, Müller E, Praeger D, Zimmermann BF, Wernecke KD, Baumann G, Stangl K, et al. Tea-induced improvement of endothelial function in humans: no role for epigallocatechin gallate (EGCG). Sci Rep. 2017;7(1):2279.

Article  PubMed  PubMed Central  ADS  Google Scholar 

Gaeini Z, Bahadoran Z, Mirmiran P, Azizi F. Tea, coffee, caffeine intake and the risk of cardio-metabolic outcomes: findings from a population with low coffee and high tea consumption. Nutr Metab (Lond). 2019;16:28.

Article  PubMed  Google Scholar 

Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA. 2006;296(10):1255–65.

Article  CAS  PubMed  Google Scholar 

Kokubo Y, Iso H, Saito I, Yamagishi K, Yatsuya H, Ishihara J, Inoue M, Tsugane S. The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort. Stroke. 2013;44(5):1369–74.

Article  CAS  PubMed  Google Scholar 

Rehman T, Rajaa S, Kumar G, Jayalakshmy R. Prevalence and factors influencing diabesity among persons with type 2 diabetes Mellitus in Urban Puducherry: a cross-sectional Analytical Study. Indian J Community Med. 2020;45(3):315–9.

Article  PubMed  PubMed Central  Google Scholar 

Bovet P, Romain S, Shamlaye C, Mendis S, Darioli R, Riesen W, Tappy L, Paccaud F. Divergent fifteen-year trends in traditional and cardiometabolic risk factors of cardiovascular diseases in the Seychelles. Cardiovasc Diabetol. 2009;8:34.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif